洛谷P1415 拆分数列

时间:2023-03-09 18:17:12
洛谷P1415 拆分数列

题目背景

【为了响应党*勤节俭、反铺张的精神,题目背景描述故事部分略去^-^】

题目描述

给出一列数字,需要你添加任意多个逗号将其拆成若干个严格递增的数。如果有多组解,则输出使得最后一个数最小的同时,字典序最大的解(即先要满足最后一个数最小;如果有多组解,则使得第一个数尽量大;如果仍有多组解,则使得第二个数尽量大,依次类推……)。

输入输出格式

输入格式:

共一行,为初始的数字。

输出格式:

共一行,为拆分之后的数列。每个数之间用逗号分隔。行尾无逗号。

输入输出样例

输入样例#1:
[1]
3456
[2]
3546
[3]
3526
[4]
0001
[5]
100000101
输出样例#1:
[1]
3,4,5,6
[2]
35,46
[3]
3,5,26
[4]
0001
[5]
100,000101

说明

【题目来源】

lzn改编

【数据范围】

对于10%的数据,输入长度<=5

对于30%的数据,输入长度<=15

对于50%的数据,输入长度<=50

对于100%的数据,输入长度<=500

解析:

进行两次dp第一次dp dp1[i] 表示以第i个数字为结尾的 1~i串的最小结尾串的开始长度

第二次dp dp2[i]表示 以第[i]个数字为开头的开始串的最大长度

然后很显然啊 先第一次找出后面最小的,然后去掉找出的最后的 dp第二次找出前面最大的依次输出即可

当然dp的时候要保持递增性,这个有很多细节,包括去0全0等

(思路及代码均来自candy博客)=.=代码还比他的丑

代码:

#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std; int n;
string s("#"),op;
int dp1[];
int dp2[];
int note[]; bool can(int l1,int r1,int l2,int r2)
// 其实这两个就是L1 ~R1的一个数字,L2 ~ R2的一个数字
//判断是否是严格递增
{
while(l1 <= r1 && note[l1] == )
{
if(l1 == r1)return false;
l1++;
}
while(l2 <= r2 && note[l2] == )
{
if(l2 == r2)return false;
l2++;
}
/**/
int len1 = r1 - l1 + ;
int len2 = r2 - l2 + ;
if(len1 < len2)return true;
if(len1 > len2)return false; for(int i = ;i < len1;i++)
{
if(note[l1 + i] == note[l2 + i])continue;
return note[l1 + i] < note[l2 + i];
}
return false;//都相同的情况下
} void dp()
{
for(int i = ;i <= n;i++)
{
dp1[i] = ; // 向前扩展最多一位(因为他没法不扩展,扩展就可能变大)
for(int j = i;j >= ;j--)
if(can(dp1[j - ],j - ,j,i)) //
{
dp1[i] = j;break;
}
} dp2[dp1[n]] = n;int zz = dp1[n];
while(note[zz - ] == )dp2[zz - ] = n,zz--; for(int i = dp1[n] - ;i >= ;i--)
{
for(int j = dp1[n] - ;j >= i;j--)
if(can(i,j,j+,dp2[j + ]))
{
dp2[i] = j;break;
}
} } int main()
{
cin >> op;
s += op;
n = s.size() - ;
for(int i = ;i <= n;i++)
note[i] = s[i] - '';
dp();
int now = ;
while(now <= n)
{
if(now != )printf(",");
for(int i = now;i <= dp2[now];i++)printf("%d",note[i]);
now = dp2[now] + ; }
return ;
}