DAG上动态规划

时间:2023-03-09 18:13:03
DAG上动态规划

很多动态规划问题都可以转化为DAG上的最长路,最短路,或路径计数问题。

硬币问题:

有N中硬币,面值分别为v1,v2,v3,……vn,每种都无穷多,给定非负整数S,可以选用多少个硬币,使他们的总和恰好为S。输出硬币数目的最小值和最大值。

解:每种面值看作一个点,表示:还需要凑足的面值。则开始状态为S,目标状态为0;若当前状态为i,当使用硬币j后,状态转为i-v[j].

代码说明好了。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <string>
#include <vector>
#include <set>
#include <map>
#include <queue>
#include <stack>
using namespace std;
const int INF = 0x7fffffff;
const double EXP = 1e-;
const int MS = ;
int minv[MS], maxv[MS];
int V[MS];
int main()
{
fill(minv, minv + MS, INF);
fill(maxv, maxv + MS, -INF);
minv[] = maxv[] = ;
int N, S;
cin >> N >> S;
for (int i = ; i <= N; i++)
cin >> V[i]; for (int i = ; i <= S; i++)
for (int j = ; j <=N;j++)
if (i >= V[j])
{
minv[i] = min(minv[i], minv[i - V[j]] + );
maxv[i] = max(maxv[i], maxv[i - V[j]] + );
}
cout << minv[S] << " " << maxv[S] << endl;
return ;
}

输出字典序最小的方案:

 void print_ans(int *d, int s)
{
for (int i = ; i <= n;i++)
if (s >= v[i] && d[s] == d[s - v[i]] + )
{
cout << i << " ";
print_ans(d, s - v[i]);
break;
}
}
print_ans(minv, S);
cout << endl;
print_ans(maxv, S);

另一种方法求字典序最小的方案。

用min_coin[i]来记录状态为i时,最小的j,满足d[j]+1=d[i];

code:

 for (int i = ; i <= S; i++)
for (int j = ; j <= n; j++)
{
if (i > =v[j])
{
if (minv[i] > minv[i - v[j]] + ) //如果j从大到小 则>=
{
minv[i] = minv[i - v[j]] + ;
min_coin[i] = j;
}
if (maxv[i] < maxv[i - v[j]] + ) //如果j从大到小,则<=
{
maxv[i] = maxv[i - v[j]] + ;
max_coin[i] = j;
}
}
}
void print_ans(int *d, int S)
{
while (S)
{
cout << d[S] << " ";
s -= v[d[s]];
}
}
print_ans(min_coin, S);
cout << endl;
print_ans(max_coin, S);

问题二:矩形嵌套。

矩形的长宽为a,b;设一个矩形的长宽为a,b,另一个矩形长宽为c,d;当a<c&&b<d  或 b<c&&a<d时,两个矩形可以嵌套。

现在给出N个矩形,嵌套组合为第一个嵌套在第二个,第二个可以嵌套在第三个,第三个可以嵌套在第四个,……。

求数量多的嵌套组合的个数。

解:DAG 法。每个矩形抽象为一个点,当矩形a可以嵌套在矩形b时,我们在a,b之间连一条边。那么问题转化为求DAG上的最长路径。

设d[i]为从节点i出发的最长路径,则有d[i]=max(d[j]+1),   (i,j)是一条边。

 //记忆化搜索
int d[MS];
int dp(int i)
{
int &ans = d[i];
if (ans > )
return ans;
ans = ;
for (int j = ; j <= n; j++)
if (G[i][j])
ans = max(ans, dp(j)+ );
return ans;
}

输出字典序最小的方案:

 void print_ans(int i)   //  d[i]==max  &&  i is smallest
{
cout << i << " ";
for (int j = ; j <= n; j++)
{
if (G[i][j] && d[i] == d[j] + )
{
print_ans(j);
break;
}
}
}