C. Multiplicity 简单数论+dp(dp[i][j]=dp[i-1][j-1]+dp[i-1][j] 前面序列要满足才能构成后面序列)+sort

时间:2023-03-09 18:03:34
C. Multiplicity  简单数论+dp(dp[i][j]=dp[i-1][j-1]+dp[i-1][j]  前面序列要满足才能构成后面序列)+sort

题意:给出n 个数 的序列 问 从n个数删去任意个数  删去的数后的序列b1 b2 b3 ......bk  k|bk

思路: 这种题目都有一个特性 就是取到bk 的时候 需要前面有个bk-1的序列前置  这个时候暴力会多一个n 的复杂度

所以只要定义一个状态(j)表示选择了j个数 这个时候就可以转移到j+1 了

定义状态:dp[i][j] 前i个数 选择了j个

dp[i][j]=dp[i-1][j-1]+dp[i-1][j] ( j|a[i] ) 这个 选+不选

dp[i][j]=dp[i-1][j]    ( j|a[i]不成立 )

这里无法用n^2的复杂度过 而 我们知道 一个数的因子数可以用sqrt(j)的时间求出来 但是j 和a[i]/j 两个因子的大小不确定 所以就会影响dp进程 因为dp要从j到j+1从小到大转移(因为二维开不下 需要滚动 不然可以随便顺序)

( 数的因子是很稀疏的 所以不会超时  )

 #include<bits/stdc++.h>
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;i++)
#define MS(arr,arr_value) memset(arr,arr_value,sizeof(arr))
#define F first
#define S second
#define pii pair<int ,int >
#define mkp make_pair
#define pb push_back
#define arr(zzz) array<ll,zzz>
#define ll long long
using namespace std;
const int maxn=1e6+;
const int inf=0x3f3f3f3f;
const int mod=1e9+;
int a[maxn];
int dp[+];
int main(){
int n;
scanf("%d",&n);
for(int i=;i<n;i++)scanf("%d",&a[i]);
ll ans=;
int p=;
dp[]=;
for(int i=;i<n;i++){
vector<int>v(sqrt(a[i]));
for(int j=;j*j<=a[i];j++){
if(a[i]%j==){
v.pb(j);
if(a[i]/j!=j)v.pb(a[i]/j);
}
}
sort(v.begin(),v.end(),[](int a,int b){return a>b;});
for(auto p:v){
dp[p]=(1ll*dp[p-]+dp[p])%mod;
}
}
for(int i=;i<=;i++)ans+=dp[i],ans%=mod;
cout<<ans<<endl;
return ;
}