简单几何(求凸包点数) POJ 1228 Grandpa's Estate

时间:2023-03-09 18:00:17
简单几何(求凸包点数) POJ 1228 Grandpa's Estate

题目传送门

题意:判断一些点的凸包能否唯一确定

分析:如果凸包边上没有其他点,那么边想象成橡皮筋,可以往外拖动,这不是唯一确定的。还有求凸包的点数<=2的情况一定不能确定。

/************************************************
* Author :Running_Time
* Created Time :2015/11/4 星期三 10:24:45
* File Name :POJ_1228.cpp
************************************************/ #include <cstdio>
#include <algorithm>
#include <iostream>
#include <sstream>
#include <cstring>
#include <cmath>
#include <string>
#include <vector>
#include <queue>
#include <deque>
#include <stack>
#include <list>
#include <map>
#include <set>
#include <bitset>
#include <cstdlib>
#include <ctime>
using namespace std; #define lson l, mid, rt << 1
#define rson mid + 1, r, rt << 1 | 1
typedef long long ll;
const int N = 1e5 + 10;
const int INF = 0x3f3f3f3f;
const int MOD = 1e9 + 7;
const double EPS = 1e-10;
const double PI = acos (-1.0);
int dcmp(double x) {
if (fabs (x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
struct Point {
double x, y;
Point () {}
Point (double x, double y) : x (x), y (y) {}
Point operator - (const Point &r) const {
return Point (x - r.x, y - r.y);
}
bool operator < (const Point &r) const {
return x < r.x || (x == r.x && y < r.y);
}
bool operator == (const Point &r) const {
return dcmp (x - r.x) == 0 && dcmp (y - r.y) == 0;
}
};
typedef Point Vector;
Point read_point(void) {
double x, y; scanf ("%lf%lf", &x, &y);
return Point (x, y);
}
double dot(Point a, Point b) {
return a.x * b.x + a.y * b.y;
}
double cross(Vector A, Vector B) {
return A.x * B.y - A.y * B.x;
}
bool on_seg(Point p, Point a, Point b) {
return dcmp (cross (a - p, b - p)) == 0 && dcmp (dot (a - p, b - p)) < 0;
} /*
凸包边上无点:<= 凸包边上有点:<
*/
vector<Point> convex_hull(vector<Point> ps) {
sort (ps.begin (), ps.end ());
int n = ps.size (), k = 0;
vector<Point> qs (n * 2);
for (int i=0; i<n; ++i) {
while (k > 1 && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
for (int t=k, i=n-2; i>=0; --i) {
while (k > t && cross (qs[k-1] - qs[k-2], ps[i] - qs[k-1]) <= 0) k--;
qs[k++] = ps[i];
}
qs.resize (k - 1);
return qs;
} int main(void) {
int T; scanf ("%d", &T);
while (T--) {
int n; scanf ("%d", &n);
vector<Point> ps;
for (int i=0; i<n; ++i) ps.push_back (read_point ());
if (n == 1) {
puts ("NO"); continue;
}
vector<Point> qs = convex_hull (ps);
if (qs.size () == n || qs.size () <= 2) {
puts ("NO"); continue;
}
qs.push_back (qs[0]);
int m = qs.size ();
bool flag = false;
for (int i=0; i<m-1; ++i) {
flag = false;
for (int j=0; j<ps.size (); ++j) {
if (ps[j] == qs[i] || ps[j] == qs[i+1]) continue;
if (on_seg (ps[j], qs[i], qs[i+1])) {
flag = true; break;
}
}
if (!flag) break;
}
if (flag) puts ("YES");
else puts ("NO");
} //cout << "Time elapsed: " << 1.0 * clock() / CLOCKS_PER_SEC << " s.\n"; return 0;
}