Edit Distance leetcode java

时间:2023-03-09 17:57:03
Edit Distance leetcode java

题目:

Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)

You have the following 3 operations permitted on a word:

a) Insert a character
b) Delete a character

c) Replace a character

题解

处理这道题也是用动态规划。

动态数组dp[word1.length+1][word2.length+1]

dp[i][j]表示从word1前i个字符转换到word2前j个字符最少的步骤数。

假设word1现在遍历到字符x,word2遍历到字符y(word1当前遍历到的长度为i,word2为j)。

以下两种可能性:

1. x==y,那么不用做任何编辑操作,所以dp[i][j] = dp[i-1][j-1]

2. x != y

(1) 在word1插入y, 那么dp[i][j] = dp[i][j-1] + 1

(2) 在word1删除x, 那么dp[i][j] = dp[i-1][j] + 1

(3) 把word1中的x用y来替换,那么dp[i][j] = dp[i-1][j-1] + 1

最少的步骤就是取这三个中的最小值。

最后返回 dp[word1.length+1][word2.length+1] 即可。

代码如下:

 1 public static int minDistance(String word1, String word2) {
 2     int len1 = word1.length();
 3     int len2 = word2.length();
 4  
 5     // len1+1, len2+1, because finally return dp[len1][len2]
 6     int[][] dp = new int[len1 + 1][len2 + 1];
 7  
 8     for (int i = 0; i <= len1; i++) 
 9         dp[i][0] = i;
     
     for (int j = 0; j <= len2; j++) 
         dp[0][j] = j;
     
  
     //iterate though, and check last char
     for (int i = 1; i <= len1; i++) {
         char c1 = word1.charAt(i-1);
         for (int j = 1; j <= len2; j++) {
             char c2 = word2.charAt(j-1);
  
             //if last two chars equal
             if (c1 == c2) {
                 //update dp value for +1 length
                 dp[i][j] = dp[i-1][j-1];
             } else {
                 int replace = dp[i-1][j-1] + 1;
                 int insert = dp[i-1][j] + 1;
                 int delete = dp[i][j-1] + 1;
  
                 int min = Math.min(replace, insert);
                 min = Math.min(min,delete);
                 dp[i][j] = min;
             }
         }
     }
  
     return dp[len1][len2];
 }

Reference:

http://www.programcreek.com/2013/12/edit-distance-in-java/

http://blog.****.net/linhuanmars/article/details/24213795