Diamond咋都是模板题。。。
开个坑刷codevs的Master题。巩固一下姿势。
目前AC的题目:1001,1021,1022,
1001.舒适的路线(并查集)
求出无向图s到t路径上的min(最大边权/最小边权).(n<=500,m<=5000)
边权排序一下,枚举最小边,将比它大的边权依次加入并查集直到s和t联通,此时的最大边权一定最小。复杂度O(m^2).
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e- # define MOD # define INF # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<,l,mid # define rch p<<|,mid+,r # define mp make_pair # define pb push_back # define set pabs typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { , flag=; char ch; ; '; +(ch-'); return flag?-res:res; } void Out(int a) { ) {putchar('-'); a=-a;} ) Out(a/); putchar(a%+'); } ; //Code begin... typedef struct{int u, v, w;}Node; Node edge[]; int fa[N]; bool comp(Node a, Node b){return a.w<b.w;} int find(int x) { int s, temp; ; s=fa[s]) ; while (s!=x) temp=fa[x], fa[x]=s, x=temp; return s; } void union_set(int x, int y) { int temp=fa[x]+fa[y]; if (fa[x]>fa[y]) fa[x]=y, fa[y]=temp; else fa[y]=x, fa[x]=temp; } int gcd(int x, int y){return y?gcd(y,x%y):x;} int main () { ]; double answer=INF; scanf("%d%d",&n,&m); FOR(i,,m) scanf("%d%d%d",&edge[i].u,&edge[i].v,&edge[i].w); scanf("%d%d",&s,&t); sort(edge+,edge+m+,comp); FOR(i,,m) { mem(fa,-); mi=edge[i].w; ma=; FOR(j,i,m) { u=edge[j].u, v=edge[j].v; if (find(u)!=find(v)) union_set(find(u),find(v)); if (find(s)==find(t)) {ma=edge[j].w; break;} } ]=ma/gcd(ma,mi), ans[]=mi/gcd(ma,mi); } if (fabs(answer-INF)<eps) puts("IMPOSSIBLE"); else { ]==) printf(]); ],ans[]); } ; }
1021.玛丽卡(最短路)
求出图中删一条边后产生的最短路的最大值。(n<=1000)
考虑图中的任何一条最短路,若删除除了这条最短路的其他边,则并无什么卵用,于是我们枚举删除这条最短路的边,更新答案即可。复杂度O(n*m*logm).
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e- # define MOD # define INF # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<,l,mid # define rch p<<|,mid+,r # define mp make_pair # define pb push_back # define set pabs typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { , flag=; char ch; ; '; +(ch-'); return flag?-res:res; } void Out(int a) { ) {putchar('-'); a=-a;} ) Out(a/); putchar(a%+'); } ; //Code begin... struct Edge{int p, next, w, flag;}edge[N*N]; struct qnode{ int v, c; qnode(, ):v(_v),c(_c){} bool operator <(const qnode &r)const{return c>r.c;} }; , dis[N], pre[N], bian[N]; bool vis[N]; void add_edge(int u, int v, int w) { edge[cnt].p=v; edge[cnt].next=head[u]; edge[cnt].w=w; edge[cnt].flag=; head[u]=cnt++; } void dij(int n, int start, int flag) { mem(vis,); FOR(i,,n) dis[i]=INF; priority_queue<qnode>que; while (!que.empty()) que.pop(); dis[start]=; que.push(qnode(start,)); qnode temp; while (!que.empty()) { temp=que.top(); que.pop(); int u=temp.v; if (u==n) break; if (vis[u]) continue; vis[u]=true; for (int i=head[u]; i; i=edge[i].next) { ) continue; int v=edge[i].p; int cost=edge[i].w; if (!vis[v]&&dis[v]>dis[u]+cost) { dis[v]=dis[u]+cost; que.push(qnode(v,dis[v])); if (flag) pre[v]=u, bian[v]=i; } } } } int main () { int n, m, u, v, w; scanf("%d%d",&n,&m); while (m--) scanf("%d%d%d",&u,&v,&w), add_edge(u,v,w), add_edge(v,u,w); dij(n,,); int ans=dis[n]; ; i=pre[i]) { edge[bian[i]].flag=edge[bian[i]^].flag=; dij(n,,); ans=max(ans,dis[n]); edge[bian[i]].flag=edge[bian[i]^].flag=; } printf("%d\n",ans); ; }
1022.覆盖(二分图染色)
求在矩阵中1*2的格子最多能用多少。(n,m<=100)
显然矩阵的格子形成了一个二分图,类似奇偶校验,直接染色一遍,对于每个联通块取颜色的最小值加入答案。复杂度O(n*m).
# include <cstdio> # include <cstring> # include <cstdlib> # include <iostream> # include <vector> # include <queue> # include <stack> # include <map> # include <set> # include <cmath> # include <algorithm> using namespace std; # define lowbit(x) ((x)&(-x)) # define pi acos(-1.0) # define eps 1e- # define MOD # define INF # define mem(a,b) memset(a,b,sizeof(a)) # define FOR(i,a,n) for(int i=a; i<=n; ++i) # define FO(i,a,n) for(int i=a; i<n; ++i) # define bug puts("H"); # define lch p<<,l,mid # define rch p<<|,mid+,r # define mp make_pair # define pb push_back typedef pair<int,int> PII; typedef vector<int> VI; # pragma comment(linker, "/STACK:1024000000,1024000000") typedef long long LL; int Scan() { , flag=; char ch; ; '; +(ch-'); return flag?-res:res; } void Out(int a) { ) {putchar('-'); a=-a;} ) Out(a/); putchar(a%+'); } ; //Code begin... ][]={,,-,,,,,-}; ], n, m; void dfs(int x, int y, int flag) { vis[x][y]=flag; se[flag]++; FO(i,,) { ], py=y+ps[i][]; ||px>n||py<||py>m||g[px][py]==||vis[px][py]) continue; dfs(px,py,-flag); } } int main () { ; scanf("%d%d%d",&n,&m,&k); ; FOR(i,,n) FOR(j,,m) g[i][j]^=; FOR(i,,n) FOR(j,,m) &&vis[i][j]==) se[]=se[]=, dfs(i,j,), ans+=min(se[],se[]); printf("%d\n",ans); ; }