需求:
1、所有要检测的资源url放到一个单独文件中
2、检测cdn节点资源大小与源站文件大小是否一致
3、随机抽查几个资源,检查md5sum是否一致
4、使用多线程,可配置线程数
代码目录:
hexm:Hexm hexm$ tree ./checkcdn
./checkcdn
├── README.TXT
├── check.py # 主程序
├── conf
│ └── url.txt # 配置文件
├── lib
│ ├── __init__.py
│ ├── common.py
│ └── threadpool.py # 线程池
└── tmp
├── cdn # 存放从CDN节点系在的资源
└── origin # 存放从源站下载的资源
README.TXT
依赖:
requests
兼容性:
兼容Python3以及Python2.7 使用方法:
usage: check.py [-h] [-t THREADS] [-c COUNTS] optional arguments:
-h, --help show this help message and exit
-t THREADS, --threads THREADS
开启多少线程,默认5个
-c COUNTS, --counts COUNTS
检测多少个包的md5值,默认3个
conf/url.txt
http://xxx_1020101.apk
http://xxx_1020102.apk
http://xxx_1020103.apk
http://xxx_1020104.apk
check.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# File Name : check.py
# Author : hexm
# Mail : xiaoming.unix@gmail.com
# Created Time : 2017-03-24 10:03 import os
import sys
import random
import argparse
import requests BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR) # 代理IP
PROXIES = {
"http": "http://183.136.135.191:80",
}
# 配置文件
CONFIG = BASE_DIR + '/conf/url.txt'
# 保存CDN节点文件临时目录
CDNTEMPDIR = BASE_DIR + '/tmp/cdn/'
# 保存源站文件临时目录
ORIGINTEMPDIR = BASE_DIR + '/tmp/origin/' from lib.threadpool import ThreadPool
from lib.common import isdir, download, getfilemd5 def callback(status, result):
"""
回调函数,如果函数有返回值得话用得到
:param status: 状态 True or None
:param result: 函数返回值
"""
pass def checkstatus(url):
"""
通过head方法查看源站与当前CDN节点资源大小是否一致
:param url: url
:return: None
""" r1 = requests.head(url, proxies=PROXIES)
r2 = requests.head(url) if r1.status_code == 200 and r2.status_code == 200:
if r1.headers['Content-Length'] == r2.headers['Content-Length']:
print("%s 源站和CDN节点资源\033[0;32m一致\033[0m, 源站文件大小为%s,CDN节点文件大小为%s"
% (url,r1.headers['Content-Length'],r2.headers['Content-Length']))
else:
print("%s 源站和CDN节点资源\033[0;31m不一致\033[0m, 源站文件大小为%s,CDN节点文件大小为%s"
% (url,r1.headers['Content-Length'],r2.headers['Content-Length']))
else:
print("%s 源站和CDN节点状态码\033[0;31m异常\033[0m,源站状态码为%s,CDN节点状态码为%s"
% (url,r1.status_code,r2.status_code)) def checkmd5(url, cdnTempDir, originTempDir):
"""
检查源站与当前cdn节点资源是否一致,下载超时300s
:param url: url
:param cdnTempDir: 保存从cdn节点下载的临时文件目录
:param originTempDir: 保存从源站下载的临时文件目录
:return: None
""" filename = url.split('/')[-1]
tempCdnFile = cdnTempDir + filename
tempOriginFile = originTempDir + filename status1 = download(url, tempOriginFile, proxies=PROXIES) if status1 is not None:
if status1 == 200:
status2 = download(url, tempCdnFile)
else:
print("%s \033[0;31m状态码异常\033[0m校验失败" % url) if status1 == 200 and status2 == 200:
if getfilemd5(tempCdnFile) == getfilemd5(tempOriginFile):
print("%s 源站和cdn节点资源md5值\033[0;32m一致\033[0m," % url)
else:
print("%s 源站和cdn节点资源md5值\033[0;31m不一致\033[0m" % url)
elif status1 is None or status2 is None:
print("%s \033[0;31m下载失败\033[0m" % url) # 检查后删除下载的文件
try:
os.remove(tempOriginFile)
os.remove(tempCdnFile)
except Exception as e:
pass def parse_args():
"""
解析命令行参数
:return: args
""" parser = argparse.ArgumentParser()
help = '开启多少线程,默认5个'
parser.add_argument('-t', '--threads', type=int, help=help, default='') help = '检测多少个包的md5值,默认3个'
parser.add_argument('-c', '--counts', type=int, help=help, default=3) args = parser.parse_args()
return args if __name__ == "__main__": if not isdir(CDNTEMPDIR): os.makedirs(CDNTEMPDIR)
if not isdir(ORIGINTEMPDIR): os.makedirs(ORIGINTEMPDIR) # 从文件中获取所有url
urls = [line.strip() for line in open(CONFIG, mode='r').readlines()]
args = parse_args() # 检查包大小
pool = ThreadPool(args.threads) # 最多创建5个线程
for url in urls:
pool.run(checkstatus, (url,), callback=None) # 随机抽查3个,检查md5
for randurl in random.sample(urls, args.counts):
pool.run(checkmd5, (randurl, CDNTEMPDIR, ORIGINTEMPDIR,), callback=None)
pool.close()
check.py
lib/common.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# File Name : common.py
# Author : hexm
# Mail : xiaoming.unix@gmail.com
# Created Time : 2017-03-24 10:03 import os
import hashlib
import requests def getfilesize(path):
"""
获取文件大小
:param path: 文件路径
:return: 返回文件大小
"""
return os.path.getsize(path) def isfile(path):
"""
判断是否是文件
:param path: 文件路径
:return: 如果是返回True,否则返回None
"""
if os.path.isfile(path): return True def isdir(path):
"""
判断是否是目录
:param path: 路径
:return: True or None
"""
if os.path.isdir(path): return True def getstatus(url, proxies=None):
"""
返回状态码
:param url: url
:return: 状态码
"""
return requests.head(url, proxies).status_code def download(url, path, proxies=None):
"""
下载文件,并返回状态码
:param url: 下载的url
:param path: 保存文件的路径
:param proxies: 使用代理的地址
:return: 返回状态码
"""
try:
response = requests.get(url, proxies=proxies, stream=True, timeout=60) status = response.status_code
total_size = int(response.headers['Content-Length'])
# print(response.headers)
if status == 200:
with open(path, 'wb') as f:
for chunk in response.iter_content(chunk_size=8192):
if chunk: f.write(chunk)
if total_size == getfilesize(path): # 下载文件大小与头部Content-Length大小一致,则下载成功
return status
# 状态码非200,返回状态码
else: return status
except Exception as e:
return None def getfilemd5(path):
"""
返回文件的md5sum
:param path: 文件路径
:return: 返回校验和,否则返回None
"""
if isfile(path):
md5obj = hashlib.md5()
maxbuf = 8192
f = open(path, 'rb')
while True:
buf = f.read(maxbuf)
if not buf:
break
md5obj.update(buf)
f.close()
hash = md5obj.hexdigest()
return hash
return None if __name__ == "__main__":
pass
lib/threadpool.py
#!/usr/bin/env python
# -*- coding:utf-8 -*-
# File Name : threadpool.py
# Author : hexm
# Mail : xiaoming.unix@gmail.com
# Created Time : 2017-03-23 20:03 import sys
if sys.version > '':
import queue
else:
import Queue as queue
import threading
import contextlib
import time StopEvent = object() # 终止线程信号 class ThreadPool(object):
"""
1、解决线程重用问题,当前线程执行完任务后,不杀掉,放到空闲线程列表,继续执行下个任务
2、根据任务量开启线程,如果设置10个线程,只有2个任务,最多只会开启两个线程
3、如果有500个任务,任务执行非常快,2个线程就能完成,如果设置开启10个线程,
只会开启两个线程
""" def __init__(self, max_num, max_task_num = None):
if max_task_num:
self.q = queue.Queue(max_task_num) # 指定任务最大数,默认为None,不限定
else:
self.q = queue.Queue()
self.max_num = max_num # 最多多少线程
self.cancel = False # 执行完所有任务,终止线程信号
self.terminal = False # 无论执行完毕与否,都终止所有线程
self.generate_list = [] # 已创建多少线程
self.free_list = [] # 空闲多少线程 def run(self, func, args, callback=None):
"""
线程池执行一个任务
:param func: 任务函数
:param args: 任务函数所需参数
:param callback: 任务执行失败或成功后执行的回调函数,回调函数有两个参数1、任务函数执行状态;2、任务函数返回值
:return: 如果线程池已经终止,则返回True否则None
"""
if self.cancel:
return
# 没有空闲线程 并且已创建线程小于最大线程数才创建线程,
if len(self.free_list) == 0 and len(self.generate_list) < self.max_num:
self.generate_thread() # 满足则创建线程,并将任务放进队列
w = (func, args, callback,)
# 函数,元组,函数 ,将这三个参数放在元组里面,当成一个整体放到队列里面
self.q.put(w) # 满足条件则创建线程,并把任务放队列里面 def generate_thread(self):
"""
创建一个线程
"""
t = threading.Thread(target=self.call) # 每一个线程被创建,执行call方法
t.start() def call(self):
"""
循环去获取任务函数并执行任务函数
"""
current_thread = threading.currentThread()
self.generate_list.append(current_thread) # 每创建一个线程,将当前线程名加进已创建的线程列表 event = self.q.get() # 在队列中取任务, 没任务线程就阻塞,等待取到任务,线程继续向下执行
while event != StopEvent: # 是否满足终止线程 func, arguments, callback = event # 取出队列中一个任务
try:
result = func(*arguments) # 执行函数,并将参数传进去
success = True
except Exception as e:
success = False
result = None if callback is not None:
try:
callback(success, result)
except Exception as e:
pass with self.worker_state(self.free_list, current_thread): # 当前线程执行完任务,将当前线程置于空闲状态,
#这个线程等待队列中下一个任务到来,如果没来,一直处于空闲, 如果到来,去任务
if self.terminal:
event = StopEvent
else:
event = self.q.get() # 将当前任务加入到空闲列表后,如果有任务,取到,没有阻塞 取到后,移除当前线程
else: # 满足终止线程,在创建的线程列表中移除当前线程
self.generate_list.remove(current_thread) def close(self):
"""
执行完所有的任务后,杀掉所有线程
"""
self.cancel = True # 标志设置为True
full_size = len(self.generate_list) + 1 # 已生成线程个数, +1 针对python2.7
while full_size:
self.q.put(StopEvent) #
full_size -= 1 def terminate(self):
"""
无论是否还有任务,终止线程
"""
self.terminal = True while self.generate_list:
self.q.put(StopEvent) self.q.queue.clear() @contextlib.contextmanager
def worker_state(self, state_list, worker_thread):
"""
用于记录线程中正在等待的线程数
"""
state_list.append(worker_thread) # 将当前空闲线程加入空闲列表
try:
yield
finally:
state_list.remove(worker_thread) # 取到任务后,将当前空闲线程从空闲线程里移除, # 使用例子
if __name__ == "__main__": pool = ThreadPool(5) # 创建pool对象,最多创建5个线程 def callback(status, result):
pass def action(i):
time.sleep(1)
print(i) for i in range(30): # 共30个任务
ret = pool.run(action, (i,), callback=None) # 将action函数,及action的参数,callback函数传给run()方法
pool.close()
例子: