Harry Potter and the Hide Story(hdu3988)

时间:2023-03-09 16:55:43
Harry Potter and the Hide Story(hdu3988)

Harry Potter and the Hide Story

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 2809    Accepted Submission(s): 715

Problem Description
iSea is tired of writing the story of Harry Potter, so, lucky you, solving the following problem is enough.
Harry Potter and the Hide Story(hdu3988)
Input
The first line contains a single integer T, indicating the number of test cases.
Each test case contains two integers, N and K.

Technical Specification

1. 1 <= T <= 500
2. 1 <= K <= 1 000 000 000 000 00
3. 1 <= N <= 1 000 000 000 000 000 000
Output
For
each test case, output the case number first, then the answer, if the
answer is bigger than 9 223 372 036 854 775 807, output “inf” (without
quote).
Sample Input
2
2 2
10 10
Sample Output
Case 1: 1
Case 2: 2
 思路:素数分解;
当K = 1的时候肯定输出inf;我们将n分解成素数的乘积,那么我们需要找m!分解后含有这些素数的个数cnt[pi],那么最高次就是min(cnt[pi]/cnt1[pi]);cnt1[pi]为n中pi的个数。
 1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<queue>
5 #include<set>
6 #include<math.h>
7 #include<string.h>
8 using namespace std;
9 typedef unsigned long long LL;
10 bool prime[10000015];
11 LL ans[1000000];
12 LL prime_table[10000];
13 LL pr_cnt[10000];
14 LL pr_cn[10000];
15 LL slove(LL n,LL m,int cn);
16 int main(void)
17 {
18 int T;
19 scanf("%d",&T);
20 int i,j;
21 for(i = 2; i < 10000; i++)
22 {
23 if(!prime[i])
24 {
25 for(j = i; (i*j) <= 10000010; j++)
26 {
27 prime[i*j] = true;
28 }
29 }
30 }
31 int cn = 0;
32 for(i = 2; i < 10000010; i++)
33 if(!prime[i])ans[cn++] = i;
34 int __ca = 0;
35 while(T--)
36 {
37 LL n,m;
38 __ca++;
39 scanf("%llu %llu",&m,&n);
40 printf("Case %d: ",__ca);
41 if(n == 1)
42 printf("inf\n");
43 else
44 {
45 printf("%llu\n",slove(n,m,cn));
46 }
47 }
48 return 0;
49 }
50 LL slove(LL n,LL m,int cn)
51 {
52 int bn = 0;
53 int f = 0;
54 bool flag = false ;
55 memset(pr_cnt,0,sizeof(pr_cnt));
56 memset(pr_cn,0,sizeof(pr_cn));
57 while(n>1)
58 {
59 while(n%ans[f]==0)
60 {
61 if(!flag)
62 {
63 flag = true;
64 bn++;
65 prime_table[bn] = ans[f];
66 }
67 pr_cnt[bn]++;
68 n/=ans[f];
69 }
70 f++;
71 flag = false;
72 if((LL)ans[f]*(LL)ans[f] > n)
73 break;
74 }
75 if(n > 1)
76 {
77 bn++;
78 prime_table[bn] = n;
79 pr_cnt[bn]++;
80 }//printf("%d\n",n);
81 LL maxx = -1;
82 for(int i = 1; i <= bn; i++)
83 { //printf("%llu\n",prime_table[i]);
84 LL v = m;
85 while(v)
86 {
87 v/=(LL)prime_table[i];
88 pr_cn[i]+=v;
89 }
90 if(maxx == -1)
91 {
92 maxx = (LL)pr_cn[i]/(LL)pr_cnt[i];
93 }
94 else
95 maxx = min((LL)pr_cn[i]/(LL)pr_cnt[i],maxx);
96 }
97 return maxx;
98 }