QDUoj GZS的三角形 棋盘里的数学 思维+杨辉三角

时间:2023-03-09 16:54:12
QDUoj GZS的三角形 棋盘里的数学 思维+杨辉三角

1.

GZS的三角形

发布时间: 2015年9月6日 15:18   最后更新: 2016年6月26日 12:10   时间限制: 1000ms   内存限制: 256M

描述

机智无比的G神今天完成了一天的任务,实在是无聊的紧,拿起一支笔在纸上画起了三角形,边长为1, 2, 3,.........

QDUoj GZS的三角形 棋盘里的数学 思维+杨辉三角

即使是无聊到这种程度,G神发达的大脑也在不停的思考,从顶部的点到沿着所画出的边到达底边的方案有多少种呢。

结果可能比较大, 结果对1000003取余。

例如,边长为2的情况如下所示:

QDUoj GZS的三角形 棋盘里的数学 思维+杨辉三角

输入

第一行有一个整数 T (1 <= T <= 1000) ,是三角形的个数。
接下来T行,每行一个整数 N (1 <= N <= 10^18),代表三角形边长。

输出

输出T行,每行代表方案数,结果对1000003取余。

样例输入1 复制
3
1
2
3
样例输出1
2
8
48

QDUoj GZS的三角形 棋盘里的数学 思维+杨辉三角

规律如上:可以得到第n行即边长为n的ans[n] = 2 * ans[n-1] + (n-1) * 2*ans[n-1] = 2 * n * ans[n-1]。

但是直接这么做时间会爆,当 n >= 1000003时,对 1000003取余之后都为0。

  1. #include <iostream>
  2. #include <cstdio>
  3. #define M 1000003
  4. #define LL long long
  5. using namespace std;
  6. LL ans[M+5];
  7. int main(){
  8. int t, i;
  9. LL n;
  10. ans[1] = 2;
  11. for(i = 2; i < M; ++i)
  12. ans[i] = 2*i*ans[i-1] % M;
  13. cin >> t;
  14. while(t--){
  15. scanf("%lld", &n);
  16. if(n >= M){
  17. printf("0\n");
  18. continue;
  19. }
  20. printf("%lld\n", ans[n]);
  21. }
  22. return 0;
  23. }

2.

棋盘里的数学

发布时间: 2016年9月13日 20:39   最后更新: 2016年9月20日 12:04   时间限制: 1000ms   内存限制: 128M

描述

lhcoder有一个n行m列的棋盘,有一颗棋子从左上角(1,1)开始移动,每次只能往右或者往下移动一格,到右下角(n,m)一共有多少移动方案?

输入

有多组测试数据,每组测试数据中有两个整数n和m(2 <= n, m <= 1000),代表为n行m列的棋盘。

输出

一个整数p,代表从左上角(1,1)移动到右下角(n,m)的方案数,由于方案数可能比较大,结果请对99991取模。

样例输入1 复制
2 2
样例输出1
2
样例输入2 复制
2 3
样例输出2
3

QDUoj GZS的三角形 棋盘里的数学 思维+杨辉三角

规律如下:当x = 1或y = 1时,该ans = 1;除此之外,(x, y)的ans = (x-1, y)的ans + (x, y-1)的ans。

  1. #include <iostream>
  2. #include <cstdio>
  3. #define M 99991
  4. #define LL long long
  5. using namespace std;
  6. LL a[1005][1005];
  7. LL doo(int x, int y){
  8. if(a[x][y] != 0) return a[x][y];
  9. if(x == 1 || y == 1) return a[x][y] = 1;
  10. else return a[x][y] = (doo(x-1, y) + doo(x, y-1)) % M;
  11. }
  12. int main(){
  13. int n, m;
  14. a[1][2] = a[2][1] = 1;
  15. while(~scanf("%d %d", &n, &m)){
  16. printf("%lld\n", doo(n, m));
  17. }
  18. return 0;
  19. }