4. Median of Two Sorted Arrays(Array; Divide-and-Conquer)

时间:2023-03-09 16:26:41
4. Median of Two Sorted Arrays(Array; Divide-and-Conquer)

There are two sorted arrays nums1 and nums2 of size m and n respectively. Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)).

中位数:如果总数是偶数,那么中位数=中间两个数的平均数;如果总数是奇数,那么中位数=中间那个数的值

思路: O(logx)的算法,就想到二分法。二分法结束的条件是任何一个array只剩下一个元素了。每次递归(二分),去除某个array的一半。另外注意,每次二分至少要去掉一个元素。

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int size1 = nums1.size();
int size2 = nums2.size();
int size = size1 + size2;
int m = size >> ; if(nums1.empty()){
if(size% == ) return nums2[m];
else return (double) (nums2[m-] + nums2[m])/;
}
if(nums2.empty()){
if(size% == ) return nums1[m];
else return (double) (nums1[m-] + nums1[m])/;
} if(size% == ) return findK(nums1, nums2, , size1-, , size2-, m);
else return (double)(findK(nums1, nums2, , size1-, , size2-, m-)+findK(nums1, nums2, , size1-, , size2-, m))/;
} int findK(vector<int>& nums1, vector<int>& nums2,int s1, int e1, int s2, int e2, int k){
if(s1 == e1){
if(k == ) return min(nums1[s1],nums2[s2]); //为了防止s2+k-1越界
if(nums1[s1] < nums2[s2+k-]) return nums2[s2+k-];
else if(s2+k- == e2) return nums1[s1]; //为了防止s2+k越界
else return min(nums1[s1], nums2[s2+k]);
}
if(s2 == e2){
if(k == ) return min(nums1[s1],nums2[s2]); //为了防止s1+k-1越界
if(nums2[s2] < nums1[s1+k]) return max(nums2[s2],nums1[s1+k-]);
else if(s1+k- == e1) return nums2[s2]; //为了防止s1+k越界
else return min(nums2[s2], nums1[s1+k]);
} int m1 = s1+((e1-s1)>>);
int m2 = s2+((e2-s2)>>); int halfLen = (e1 - s1 + e2 - s2 + ) >> ;
if(k > halfLen){ //k is in the second half
if(nums1[m1] < nums2[m2]){ //delete first half of num1
return findK(nums1, nums2, m1+, e1, s2, e2, k-(m1-s1+)); //+1是考虑到m1==s1的情况,注意每次二分至少要去除一个元素
}
else{ //delete fist half of num2
return findK(nums1, nums2, s1, e1, m2+, e2, k-(m2-s2+));//+1是考虑到m2==s2的情况,注意每次二分至少要去除一个元素
}
}
else{ //k is in the first half
if(nums1[m1] < nums2[m2]){ //delete second half of num2
return findK(nums1, nums2, s1, e1, s2, m2, k);
}
else{ //delete second half of num1
return findK(nums1, nums2, s1, m1, s2, e2, k);
}
}
}
};

改进:每次去掉(size1+size2)/2个元素。

假设数组A和B如下,k=6,那么令i=k/2, j =k-k/2

注意: j =k-k/2,保证i+j涵盖整个数组,否则测试用例 [1,2,6] [3,4,5,7,8],k=5的时候将会选取4和6,而不是4和5,原因是在某次比较A[1]和B[1](只有4个,k=5少了一个),选取了A的right subarray[2,6]和B的left subarray[3,4],漏选了Target元素5。如果使用j=k-k/2,那么将会比较A[1]和B[2](5个),从而也会保留B[2]。

4. Median of Two Sorted Arrays(Array; Divide-and-Conquer)

B的前三个元素可去掉比较好理解,那么为什么A的后5个元素也能取掉呢?

=>即使B的后7个都比A的前三个大,B的前三个+A的前三个也已经满足k个要求,不需要A的后5个元素了。

4. Median of Two Sorted Arrays(Array; Divide-and-Conquer)

class Solution {
public:
double findMedianSortedArrays(vector<int>& nums1, vector<int>& nums2) {
int len = nums1.size() + nums2.size(); //see out to check null array
if(nums1.empty()){
if(len% == ) return nums2[(len >> )];
else return (double) (nums2[(len >> )-] + nums2[(len >> )])/;
}
if(nums2.empty()){
if(len% == ) return nums1[(len >> )];
else return (double) (nums1[(len >> )-] + nums1[(len >> )])/;
} if( len% == ) return findK(nums1,,nums1.size()-, nums2, , nums2.size()-,(len >> ));
else {
int m1 = findK(nums1,,nums1.size()-, nums2, , nums2.size()-,(len >> )-);
int m2 = findK(nums1,,nums1.size()-, nums2, , nums2.size()-,(len >> ));
return (double) (m1+m2)/;
} } int findK(vector<int>& nums1,int s1,int e1, vector<int>& nums2, int s2, int e2, int k) {
//termination
if(k==) return min(nums1[s1],nums2[s2]);
if(s1==e1 && s2 == e2) {
return max(nums1[s1],nums2[s2]);
}
if(s1 == e1){ // only one element in nums1
if(s2+k > e2){ //prevent overflow
return max(nums1[s1],nums2[e2]);
}
else if(nums1[s1] < nums2[s2+k-]) return nums2[s2+k-];
else if(nums1[s1] < nums2[s2+k]) return nums1[s1];
else return nums2[s2+k];
}
else if(s2 == e2){// only one element in nums2
if(s1+k > e1){ //prevent overflow
return max(nums1[e1],nums2[s2]);
}
else if( nums2[s2] < nums1[s1+k-]) return nums1[s1+k-];
else if(nums2[s2] < nums1[s1+k]) return nums2[s2];
else return nums1[s1+k];
} //make the length of first half of m1 + first half of m2 = k
int m1 = s1 + (k >> );
if(m1 > e1){ //check overflow
m1 = e1;
}
int m2 = s2 + k - (m1-s1+);
if(m2 > e2){ //check overflow
m2 = e2;
m1 = s1 + k - (m2-s2+);
} if((m1 == s1 && m2 == e2) || (m1==e1 && m2==s2)){
//try to make k-1
if(nums1[s1] < nums2[s2]) return findK(nums1,s1+,e1,nums2,s2,e2,k-);
else return findK(nums1,s1,e1,nums2,s2+,e2,k-);
} //compare two arrays
if(nums1[m1]<nums2[m2]){ //remove first half of num1 and second half of num2
return findK(nums1,m1,e1,nums2,s2,m2,k-(m1-s1)); //need to guarantee ! (m1==s1 && m2==e2)
}
else{//remove first half of num2 and second half of num1
return findK(nums1,s1,m1,nums2,m2,e2,k-(m2-s2)); // need to guarantee ! (m1==e1 && m2==s2)
}
} };