python调用R语言,关联规则可视化

时间:2023-03-09 16:24:16
python调用R语言,关联规则可视化

首先当然要配置r语言环境变量什么的

D:\R-3.5.1\bin\x64;
D:\R-3.5.1\bin\x64\R.dll;
D:\R-3.5.1;
D:\ProgramData\Anaconda3\Lib\site-packages\rpy2;

本来用python也可以实现关联规则,虽然没包,但是可视化挺麻烦的

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from pandas import read_csv def loadDataSet():
dataset = read_csv("F:/goverment/Aprior/No Number.csv")
data = dataset.values[:,:]
Data=[]
for line in data:
ls=[]
for i in line:
ls.append(i)
Data.append(ls)
#print(Data)
return Data '''
return [['a', 'c', 'e'], ['b', 'd'], ['b', 'c'], ['a', 'b', 'c', 'd'], ['a', 'b'], ['b', 'c'], ['a', 'b'],
['a', 'b', 'c', 'e'], ['a', 'b', 'c'], ['a', 'c', 'e']]''' def createC1(dataSet):
C1 = []
for transaction in dataSet:
for item in transaction:
if not [item] in C1:
C1.append([item])
C1.sort()
'''??????????????????????????????????????????????????????'''
# 映射为frozenset唯一性的,可使用其构造字典
return list(map(frozenset, C1)) # 从候选K项集到频繁K项集(支持度计算)
def scanD(D, Ck, minSupport):
ssCnt = {}
for tid in D:
for can in Ck:
if can.issubset(tid):
if not can in ssCnt:
ssCnt[can] = 1
else:
ssCnt[can] += 1
numItems = float(len(D))
retList = []
supportData = {}
for key in ssCnt:
support = ssCnt[key] / numItems
if support >= minSupport:
retList.insert(0, key)
supportData[key] = support
return retList, supportData def calSupport(D, Ck, min_support):
dict_sup = {}
for i in D:
for j in Ck:
if j.issubset(i):
if not j in dict_sup:
dict_sup[j] = 1
else:
dict_sup[j] += 1
sumCount = float(len(D))
supportData = {}
relist = []
for i in dict_sup:
temp_sup = dict_sup[i] / sumCount
if temp_sup >= min_support:
relist.append(i)
supportData[i] = temp_sup # 此处可设置返回全部的支持度数据(或者频繁项集的支持度数据)
return relist, supportData # 改进剪枝算法
def aprioriGen(Lk, k): # 创建候选K项集 ##LK为频繁K项集
retList = []
lenLk = len(Lk)
for i in range(lenLk):
for j in range(i + 1, lenLk):
L1 = list(Lk[i])[:k - 2]
L2 = list(Lk[j])[:k - 2]
L1.sort()
L2.sort()
if L1 == L2: # 前k-1项相等,则可相乘,这样可防止重复项出现
# 进行剪枝(a1为k项集中的一个元素,b为它的所有k-1项子集)
a = Lk[i] | Lk[j] # a为frozenset()集合
a1 = list(a)
b = []
# 遍历取出每一个元素,转换为set,依次从a1中剔除该元素,并加入到b中
for q in range(len(a1)):
t = [a1[q]]
tt = frozenset(set(a1) - set(t))
b.append(tt)
t = 0
for w in b:
# 当b(即所有k-1项子集)都是Lk(频繁的)的子集,则保留,否则删除。
if w in Lk:
t += 1
if t == len(b):
retList.append(b[0] | b[1])
return retList def apriori(dataSet, minSupport=0.2):
C1 = createC1(dataSet)
D = list(map(set, dataSet)) # 使用list()转换为列表
L1, supportData = calSupport(D, C1, minSupport)
L = [L1] # 加列表框,使得1项集为一个单独元素
k = 2
while (len(L[k - 2]) > 0):
Ck = aprioriGen(L[k - 2], k)
Lk, supK = scanD(D, Ck, minSupport) # scan DB to get Lk
supportData.update(supK)
L.append(Lk) # L最后一个值为空集
k += 1
del L[-1] # 删除最后一个空集
return L, supportData # L为频繁项集,为一个列表,1,2,3项集分别为一个元素。 # 生成集合的所有子集
def getSubset(fromList, toList):
for i in range(len(fromList)):
t = [fromList[i]]
tt = frozenset(set(fromList) - set(t))
if not tt in toList:
toList.append(tt)
tt = list(tt)
if len(tt) > 1:
getSubset(tt, toList) #def calcConf(freqSet, H, supportData, ruleList, minConf=0.7):
def calcConf(freqSet, H, supportData, Rule, minConf=0.7):
for conseq in H:
conf = supportData[freqSet] / supportData[freqSet - conseq] # 计算置信度
# 提升度lift计算lift = p(a & b) / p(a)*p(b)
lift = supportData[freqSet] / (supportData[conseq] * supportData[freqSet - conseq]) ls=[]
if conf >= minConf and lift > 3:
for i in freqSet - conseq:
#print(i," ",end="")
ls.append(i)
ls.append(" ")
#print('-->',end="")
ls.append('-->')
for i in conseq:
#print(i," ",end="")
ls.append(i)
ls.append(" ")
#print('支持度:', round(supportData[freqSet - conseq]*100, 1), "%",' 置信度:', round(conf*100,1),"%",' lift值为', round(lift, 2))
#ls.append(' 支持度:')
#ls.append(round(supportData[freqSet - conseq]*100, 1))
#ls.append("% ")
#ls.append(' 置信度:')
ls.append( round(conf*100,1))
ls.append("% ")
#ls.append( round(lift, 2))
#ls.append(round(lift, 2)) #ruleList.append((freqSet - conseq, conseq, conf))
if ls!=[]:
#print(len(ls))
Rule.append(ls)
# =============================================================================
# for line in Rule:
# for i in line:
# print(i,end="")
# print("")
# =============================================================================
return Rule
# =============================================================================
# print(freqSet - conseq, '-->', conseq, '支持度', round(supportData[freqSet - conseq], 2), '置信度:', round(conf,3),
# 'lift值为:', round(lift, 2))
# ============================================================================= # 生成规则
def gen_rule(L, supportData, minConf=0.7):
bigRuleList = []
for i in range(1, len(L)): # 从二项集开始计算
for freqSet in L[i]: # freqSet为所有的k项集
# 求该三项集的所有非空子集,1项集,2项集,直到k-1项集,用H1表示,为list类型,里面为frozenset类型,
H1 = list(freqSet)
all_subset = []
getSubset(H1, all_subset) # 生成所有的子集
calcConf(freqSet, all_subset, supportData, bigRuleList, minConf)
return bigRuleList if __name__ == '__main__': dataSet = loadDataSet()
#print(dataSet)
L, supportData = apriori(dataSet, minSupport=0.05)
rule = gen_rule(L, supportData, minConf=0.5)
for i in rule:
for j in i:
if j==',':
continue
else:
print(j,end="")
print("") '''
具体公式: P(B|A)/P(B) 称为A条件对于B事件的提升度,如果该值=1,说明两个条件没有任何关联,
如果<1,说明A条件(或者说A事件的发生)与B事件是相斥的,
一般在数据挖掘中当提升度大于3时,我们才承认挖掘出的关联规则是有价值的。
'''

之后还是用r吧,要下载rpy2,见https://www.cnblogs.com/caiyishuai/p/9520214.html

还要下载两个R的包

import rpy2.robjects as robjects
b=('''
install.packages("arules")
install.packages("arulesViz")
''')
robjects.r(b)

然后就是主代码了

import rpy2.robjects as robjects

a=('''Encoding("UTF-8")
setwd("F:/goverment/Aprior") all_data<-read.csv("F:/goverment/Aprior/NewData.csv",header = T,#将数据转化为因子型
colClasses=c("factor","factor","factor","factor","factor","factor","factor","factor","factor","factor","factor","factor"))
library(arules)
rule=apriori(data=all_data[,c(1,4,5,6,7,8,9,10,12)], parameter = list(support=0.05,confidence=0.7,minlen=2,maxlen=10))
''')
robjects.r(a) robjects.r('''
rule.subset<-subset(rule,lift>1)
#inspect(rule.subset)
rules.sorted<-sort(rule.subset,by="lift")
subset.matrix<-is.subset(rules.sorted,rules.sorted)
lower.tri(subset.matrix,diag=T)
subset.matrix[lower.tri(subset.matrix,diag = T)]<-NA
redundant<-colSums(subset.matrix,na.rm = T)>=1 #这五条就是去冗余(感兴趣可以去网上搜),我虽然这里写了,但我没有去冗余,我的去了以后一个规则都没了
which(redundant)
rules.pruned<-rules.sorted[!redundant]
#inspect(rules.pruned) #输出去冗余后的规则
''') c=(''' library(arulesViz)#掉包 jpeg(file="plot1.jpg")
#inspect(rule.subset)
plt<-plot(rule.subset,shading = "lift")#画散点图
dev.off() subrules<-head(sort(rule.subset,by="lift"),50)
#jpeg(file="plot2.jpg")
plot(subrules,method = "graph")#画图
#dev.off() rule.sorted <- sort(rule.subset, decreasing=TRUE, by="lift") #按提升度排序
rules.write<-as(rule.sorted,"data.frame") #将规则转化为data类型
write.csv(rules.write,"F:/goverment/Aprior/NewRules.csv",fileEncoding="UTF-8")
''')
robjects.r(c) #取出保存的规则,放到一个列表中
from pandas import read_csv
data_set = read_csv("F:/goverment/Aprior/NewRules.csv")
data = data_set.values[:, :]
rul = []
for line in data:
ls = []
for j in line:
try :
j=float(j)
if j>0 and j<=1:
j=str(round(j*100,2))+"%"
ls.append(j)
else:
ls.append(round(j,2))
except:
ls.append(j)
rul.append(ls) for line in rul:
print(line)