暂时没有时间整理,先放在这里:
http://www.quora.com/Prime-Numbers/What-are-good-ways-to-find-nth-prime-number-in-the-fastest-way
—————————————————————————————————————————————————————————————————————
This is an algorithm to test whether or not a given integer is prime. It's called the AKS primality test http://en.m.wikipedia.org/wiki/A...
And can be done in polynomial time, which is usually considered a decent amount of time.
Now if you're trying to compute the nth prime, it has been proven that the nth prime must be greater than
and less than
When . So if you're searching for the nth prime, I'd look in this gap.
——————————————————————————————————————————————————————————————————————
There is no general formula to compute nth prime number.
[1] http://en.wikipedia.org/wiki/Sie...
[2] http://primes.utm.edu/nthprime/a...
———————————————————————————————————————————————————————————————————————
附上一个同学写的用bitarray实现的http://en.wikipedia.org/wiki/Sieve_of_Eratosthenes求素数的方法:
/*
* ========================================================================
*
* Filename: bitset.h
*
* Description: bitset implementation in c.
*
* Created: 05/27/2013 11:09:43 PM
*
* Author: Fu Haiping (forhappy), haipingf@gmail.com
* Company: ICT ( Institute Of Computing Technology, CAS )
*
* ========================================================================
*/
#include <limits.h> /* for CHAR_BIT */ #define BITMASK(b) (1 << ((b) % CHAR_BIT))
#define BITSLOT(b) ((b) / CHAR_BIT)
#define BITSET(a, b) ((a)[BITSLOT(b)] |= BITMASK(b))
#define BITCLEAR(a, b) ((a)[BITSLOT(b)] &= ~BITMASK(b))
#define BITTEST(a, b) ((a)[BITSLOT(b)] & BITMASK(b))
#define BITNSLOTS(nb) ((nb + CHAR_BIT - 1) / CHAR_BIT)
/*
* char bitarray[BITNSLOTS(47)];
* BITSET(bitarray, 23);
* if(BITTEST(bitarray, 35)) ...
*
* */ #include <stdio.h>
#include <string.h> #define MAX 10000 int main()
{
char bitarray[BITNSLOTS(MAX)];
int i, j; memset(bitarray, , BITNSLOTS(MAX)); for(i = ; i < MAX; i++) {
if(!BITTEST(bitarray, i)) {
printf("%d\n", i);
for(j = i + i; j < MAX; j += i)
BITSET(bitarray, j);
}
}
return ;
}