#6270. 数据结构板子题
sol:对于一个询问L,R,Limit,答案就是所有长度小于R-l+1的线段-长度小于Limit的线段-左端点在L左边的线段-右端点在R右边的线段,求这个东西
后面两个东西可以十分容易的用两棵树状数组维护,但是直接搞得话长度小于Limit且不在区间[L,R]中的区间会被减两遍,把他们加上去即可
#include <bits/stdc++.h>
using namespace std;
typedef int ll;
inline char gc(){
static char buf[],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,,,stdin),p1==p2)?EOF:*p1++;
}
#define getchar gc
inline ll read()
{
ll s=;
bool f=;
char ch=' ';
while(!isdigit(ch))
{
f|=(ch=='-'); ch=getchar();
}
while(isdigit(ch))
{
s=(s<<)+(s<<)+(ch^); ch=getchar();
}
return (f)?(-s):(s);
}
#define R(x) x=read()
inline void write(ll x)
{
if(x<)
{
putchar('-'); x=-x;
}
if(x<)
{
putchar(x+''); return;
}
write(x/);
putchar((x%)+'');
return;
}
#define W(x) write(x),putchar(' ')
#define Wl(x) write(x),putchar('\n')
const int N=;
int n,Q,ans[N];
struct Question
{
int l,r,Down,Id;
}Ques[N];
vector<int>Limit1[N],Limit2[N];
struct Xianduan
{
int l,r,Len;
inline bool operator<(const Xianduan &tmp)const
{
return Len<tmp.Len;
}
}Line[N<<];
struct BIT
{
int S[N];
#define lowbit(x) ((x)&(-x))
inline void Ins(int x)
{
for(;x<=n;x+=lowbit(x))
{
++S[x];
}
}
inline int Que(int x)
{
int Sum=;
for(;x;x-=lowbit(x))
{
Sum+=S[x];
}
return Sum;
}
}T1,T2;
int main()
{
register int i,j;
R(n); R(Q);
for(i=;i<=n;i++)
{
R(Line[i].l); R(Line[i].r);
Line[i].Len=Line[i].r-Line[i].l;
}
sort(Line+,Line+n+);
for(i=;i<=Q;i++)
{
R(Ques[i].l); R(Ques[i].r); R(Ques[i].Down); Ques[i].Id=i;
if(Ques[i].r-Ques[i].l>=Ques[i].Down)
{
Limit1[Ques[i].Down-].push_back(i);
Limit2[Ques[i].r-Ques[i].l+].push_back(i);
}
}
register int Pos=,tot=;
for(i=;i<=n;i++) //枚举线段长度
{
while(Pos<=n&&Line[Pos].Len==i)
{
T1.Ins(Line[Pos].l);
T2.Ins(Line[Pos].r);
++tot; ++Pos;
}
for(j=;j<Limit1[i].size();j++)
{
register int o=Limit1[i][j];
ans[o]=ans[o]-tot+T1.Que(Ques[o].l-)+(tot-T2.Que(Ques[o].r));
}
for(j=;j<Limit2[i].size();j++)
{
register int o=Limit2[i][j];
ans[o]=ans[o]+tot-T1.Que(Ques[o].l-)-(tot-T2.Que(Ques[o].r));
}
}
for(i=;i<=Q;i++) Wl(ans[i]);
return ;
}
/*
input
5 5
1 2
1 3
2 3
2 4
2 5
1 5 1
1 4 1
1 5 2
2 5 2
1 5 3
output
5
4
3
2
1
*/