【Python】生成器、回溯和八皇后问题

时间:2023-01-02 09:58:14

八皇后问题:

  把N个皇后,放在N*N的棋盘上面,从第一行往下放,每个皇后占一行,同时,每个皇后不能处在同一列,对角线上,有多少种放置方法。

思路:

  典型的回溯问题:

    1.当要放置最后一个皇后时候,默认前N-1个皇后已经全部放置好了,那么验证在第N行上的每个位置是否可行,即是否与之前的皇后在同一列或者对角线即可;

    2.如果放置的不是最后一个皇后,则回溯。回溯至刚开始放第一个元素时候,然后不断的返回上一层。每一层都认为下一层传递给自己的是正确的信息

 def isconflict(state, nx):
"""
验证下一个要放置的皇后是否与之前的皇后冲突
"""
ny = len(state)
for i in range(ny):
if abs(state[i]-nx) in (, ny-i):
return True
return False def queens(num=, state=[]):
"""
主处理函数
"""
for p in range(num):
if not isconflict(state, p):
if len(state) == num-:
yield p
else:
for result in queens(num, state+[p]):
yield [result, p] def play3(l):
"""
把返回的结果列表中的子列表裂解开
"""
try:
try: l+''
except TypeError: pass
else: raise TypeError
for i in l:
for s in play3(i):
yield s
except TypeError:
yield l def printqueens(l):
"""
打印输出结果
"""
l = play3(l)
l = list(l)
n = len(l)
for i in range(n):
for j in range(n):
if j != l[i]:
print('.', end=' ')
else:
print('q', end=' ')
print(' ') if __name__ == '__main__':
l = list(queens())
print(l)
n = len(l)
print('有 {0} 种放置方法:'.format(n))
for i in range(n):
print('--------------------')
printqueens(l[i])
print('--------------------')