Java多线程4:synchronized锁机制

时间:2022-02-23 14:40:59

脏读

一个常见的概念。在多线程中,难免会出现在多个线程中对同一个对象的实例变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数据其实是被更改过的。

多线程线程安全问题示例

看一段代码:

public class ThreadDomain13
{
private int num = 0; public void addNum(String userName)
{
try
{
if ("a".equals(userName))
{
num = 100;
System.out.println("a set over!");
Thread.sleep(2000);
}
else
{
num = 200;
System.out.println("b set over!");
}
System.out.println(userName + " num = " + num);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

写两个线程分别去add字符串"a"和字符串"b":

public class MyThread13_0 extends Thread
{
private ThreadDomain13 td; public MyThread13_0(ThreadDomain13 td)
{
this.td = td;
} public void run()
{
td.addNum("a");
}
}
public class MyThread13_1 extends Thread
{
private ThreadDomain13 td; public MyThread13_1(ThreadDomain13 td)
{
this.td = td;
} public void run()
{
td.addNum("b");
}
}

写一个主函数分别运行这两个线程:

public static void main(String[] args)
{
ThreadDomain13 td = new ThreadDomain13();
MyThread13_0 mt0 = new MyThread13_0(td);
MyThread13_1 mt1 = new MyThread13_1(td);
mt0.start();
mt1.start();
}

看一下运行结果:

a set over!
b set over!
b num = 200
a num = 200

按照正常来看应该打印"a num = 100"和"b num = 200"才对,现在却打印了"b num = 200"和"a num = 200",这就是线程安全问题。我们可以想一下是怎么会有线程安全的问题的:

  1. mt0先运行,给num赋值100,然后打印出"a set over!",开始睡觉
  2. mt0在睡觉的时候,mt1运行了,给num赋值200,然后打印出"b set over!",然后打印"b num = 200"
  3. mt1睡完觉了,由于mt0的num和mt1的num是同一个num,所以mt1把num改为了200了,mt0也没办法,对于它来说,num只能是100,mt0继续运行代码,打印出"a num = 200"

分析了产生问题的原因,解决就很简单了,给addNum(String userName)方法加同步即可:

public class ThreadDomain13
{
private int num = 0; public synchronized void addNum(String userName)
{
try
{
if ("a".equals(userName))
{
num = 100;
System.out.println("a set over!");
Thread.sleep(2000);
}
else
{
num = 200;
System.out.println("b set over!");
}
System.out.println(userName + " num = " + num);
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

看一下运行结果:

a set over!
a num = 100
b set over!
b num = 200

多个对象多个锁

在同步的情况下,把main函数内的代码改一下:

public static void main(String[] args)
{
ThreadDomain13 td0 = new ThreadDomain13();
ThreadDomain13 td1 = new ThreadDomain13();
MyThread13_0 mt0 = new MyThread13_0(td0);
MyThread13_1 mt1 = new MyThread13_1(td1);
mt0.start();
mt1.start();
}

看一下运行结果:

a set over!
b set over!
b num = 200
a num = 100

打印结果的方式变了,打印的顺序是交叉的,这又是为什么呢?

这里有一个重要的概念。关键字synchronized取得的锁都是对象锁,而不是把一段代码或方法(函数)当作锁,哪个线程先执行带synchronized关键字的方法,哪个线程就持有该方法所属对象的锁,其他线程都只能呈等待状态。但是这有个前提:既然锁叫做对象锁,那么势必和对象相关,所以多个线程访问的必须是同一个对象

如果多个线程访问的是多个对象,那么Java虚拟机就会创建多个锁,就像上面的例子一样,创建了两个ThreadDomain13对象,就产生了2个锁。既然两个线程持有的是不同的锁,自然不会受到"等待释放锁"这一行为的制约,可以分别运行addNum(String userName)中的代码。

synchronized方法与锁对象

上面我们认识了对象锁,对象锁这个概念,比较抽象,确实不太好理解,看一个例子,在一个实体类中定义一个同步方法和一个非同步方法:

public class ThreadDomain14_0
{
public synchronized void methodA()
{
try
{
System.out.println("Begin methodA, threadName = " +
Thread.currentThread().getName());
Thread.sleep(5000);
System.out.println("End methodA, threadName = " +
Thread.currentThread().getName() + ", end Time = " +
System.currentTimeMillis());
}
catch (InterruptedException e)
{
e.printStackTrace();
}
} public void methodB()
{
try
{
System.out.println("Begin methodB, threadName = " +
Thread.currentThread().getName() + ", begin time = " +
System.currentTimeMillis());
Thread.sleep(5000);
System.out.println("End methodB, threadName = " +
Thread.currentThread().getName());
}
catch (InterruptedException e)
{
e.printStackTrace();
}
}
}

一个线程调用其同步方法,一个线程调用其非同步方法:

public class MyThread14_0 extends Thread
{
private ThreadDomain14_0 td; public MyThread14_0(ThreadDomain14_0 td)
{
this.td = td;
} public void run()
{
td.methodA();
}
}
public class MyThread14_1 extends Thread
{
private ThreadDomain14_0 td; public MyThread14_1(ThreadDomain14_0 td)
{
this.td = td;
} public void run()
{
td.methodB();
}
}

写一个main函数去调用这两个线程:

public static void main(String[] args)
{
ThreadDomain14_0 td = new ThreadDomain14_0();
MyThread14_0 mt0 = new MyThread14_0(td);
mt0.setName("A");
MyThread14_1 mt1 = new MyThread14_1(td);
mt1.setName("B");
mt0.start();
mt1.start();
}

看一下运行效果:

Begin methodA, threadName = A
Begin methodB, threadName = B, begin time = 1443697780869
End methodB, threadName = B
End methodA, threadName = A, end Time = 1443697785871

从结果看到,第一个线程调用了实体类的methodA()方法,第二个线程完全可以调用实体类的methodB()方法。但是我们把methodB()方法改为同步就不一样了,就不列修改之后的代码了,看一下运行结果:

Begin methodA, threadName = A
End methodA, threadName = A, end Time = 1443697913156
Begin methodB, threadName = B, begin time = 1443697913156
End methodB, threadName = B

从这个例子我们得出两个重要结论:

  1. A线程持有Object对象的Lock锁,B线程可以以异步方式调用Object对象中的非synchronized类型的方法
  2. A线程持有Object对象的Lock锁,B线程如果在这时调用Object对象中的synchronized类型的方法则需要等待,也就是同步

synchronized锁重入

关键字synchronized拥有锁重入的功能。所谓锁重入的意思就是:当一个线程得到一个对象锁后,再次请求此对象锁时可以再次得到该对象的锁。看一个例子:

public class ThreadDomain16
{
public synchronized void print1()
{
System.out.println("ThreadDomain16.print1()");
print2();
} public synchronized void print2()
{
System.out.println("ThreadDomain16.print2()");
print3();
} public synchronized void print3()
{
System.out.println("ThreadDomain16.print3()");
}
}
public class MyThread16 extends Thread
{
public void run()
{
ThreadDomain16 td = new ThreadDomain16();
td.print1();
}
}
public static void main(String[] args)
{
MyThread16 mt = new MyThread16();
mt.start();
}

看一下运行结果:

ThreadDomain16.print1()
ThreadDomain16.print2()
ThreadDomain16.print3()

看到可以直接调用ThreadDomain16中的打印语句,这证明了对象可以再次获取自己的内部锁。这种锁重入的机制,也支持在父子类继承的环境中

异常自动释放锁

最后一个知识点是异常。当一个线程执行的代码出现异常时,其所持有的锁会自动释放。模拟的是把一个long型数作为除数,从MAX_VALUE开始递减,直至减为0,从而产生ArithmeticException。看一下例子:

public class ThreadDomain17
{
public synchronized void testMethod()
{
try
{
System.out.println("Enter ThreadDomain17.testMethod, currentThread = " +
Thread.currentThread().getName());
long l = Integer.MAX_VALUE;
while (true)
{
long lo = 2 / l;
l--;
}
}
catch (Exception e)
{
e.printStackTrace();
}
}
}
public class MyThread17 extends Thread
{
private ThreadDomain17 td; public MyThread17(ThreadDomain17 td)
{
this.td = td;
} public void run()
{
td.testMethod();
}
}
public static void main(String[] args)
{
ThreadDomain17 td = new ThreadDomain17();
MyThread17 mt0 = new MyThread17(td);
MyThread17 mt1 = new MyThread17(td);
mt0.start();
mt1.start();
}

看一下运行结果:

Enter ThreadDomain17.testMethod, currentThread = Thread-0
Enter ThreadDomain17.testMethod, currentThread = Thread-1
java.lang.ArithmeticException: / by zero
at com.xrq.example.e17.ThreadDomain17.testMethod(ThreadDomain17.java:14)
at com.xrq.example.e17.MyThread17.run(MyThread17.java:14)
java.lang.ArithmeticException: / by zero
at com.xrq.example.e17.ThreadDomain17.testMethod(ThreadDomain17.java:14)
at com.xrq.example.e17.MyThread17.run(MyThread17.java:14)

因为打印结果是静态的,所以不是很明显。在l--前一句加上Thread.sleep(1)结论会更明显,第一句打出来之后,整个程序都停住了,直到Thread-0抛出异常后,Thread-1才可以运行,这也证明了我们的结论。

后记

文章里面的这些个结论,记一下都是很快的,但是是否记一下就好了?我认为记住这些结论一点都不重要,重要的应该是学习如何通过代码去验证这些结论。因为只有知道了如何通过代码去验证结论,才可以说真正对于synchronized关键字的各种细节有了感性、有了深入的理解,以后碰到其他synchronized的场景就可以以自己的理解去正确分析问题。

Java多线程4:synchronized锁机制的更多相关文章

  1. java 多线程8 : synchronized锁机制 之 方法锁

    脏读 一个常见的概念.在多线程中,难免会出现在多个线程中对同一个对象的实例变量或者全局静态变量进行并发访问的情况,如果不做正确的同步处理,那么产生的后果就是"脏读",也就是取到的数 ...

  2. Java多线程学习——synchronized锁机制

    Java在多线程中使用同步锁机制时,一定要注意锁对对象,下面的例子就是没锁对对象(每个线程使用一个被锁住的对象时,得先看该对象的被锁住部分是否有人在使用) 例子:两个人操作同一个银行账户,丈夫在ATM ...

  3. java 多线程9 : synchronized锁机制 之 代码块锁

    synchronized同步代码块 用关键字synchronized声明方法在某些情况下是有弊端的,比如A线程调用同步方法执行一个较长时间的任务,那么B线程必须等待比较长的时间.这种情况下可以尝试使用 ...

  4. java 多线程并发 synchronized 同步机制及方式

    2. 锁机制 3. 并发 Excutor框架 4. 并发性与多线程介绍 1. synchronized  参考1. synchronized 分两种方式进行线程的同步:同步块.同步方法 1. 方法同步 ...

  5. Java多线程,对锁机制的进一步分析

    1 可重入锁 可重入锁,也叫递归锁.它有两层含义,第一,当一个线程在外层函数得到可重入锁后,能直接递归地调用该函数,第二,同一线程在外层函数获得可重入锁后,内层函数可以直接获取该锁对应其它代码的控制权 ...

  6. Java多线程5:Synchronized锁机制

    一.前言 在多线程中,有时会出现多个线程对同一个对象的变量进行并发访问的情形,如果不做正确的同步处理,那么产生的后果就是“脏读”,也就是获取到的数据其实是被修改过的. 二.引入Synchronized ...

  7. Java多线程系列--“JUC锁”03之 公平锁(一)

    概要 本章对“公平锁”的获取锁机制进行介绍(本文的公平锁指的是互斥锁的公平锁),内容包括:基本概念ReentrantLock数据结构参考代码获取公平锁(基于JDK1.7.0_40)一. tryAcqu ...

  8. Java多线程系列--“JUC锁”01之 框架

    本章,我们介绍锁的架构:后面的章节将会对它们逐个进行分析介绍.目录如下:01. Java多线程系列--“JUC锁”01之 框架02. Java多线程系列--“JUC锁”02之 互斥锁Reentrant ...

  9. Java多线程系列--“JUC锁”05之 非公平锁

    概要 前面两章分析了"公平锁的获取和释放机制",这一章开始对“非公平锁”的获取锁/释放锁的过程进行分析.内容包括:参考代码获取非公平锁(基于JDK1.7.0_40)释放非公平锁(基 ...

  10. Java多线程系列--“JUC锁”11之 Semaphore信号量的原理和示例

    概要 本章,我们对JUC包中的信号量Semaphore进行学习.内容包括:Semaphore简介Semaphore数据结构Semaphore源码分析(基于JDK1.7.0_40)Semaphore示例 ...

随机推荐

  1. URL安全的Base64编码

    Base64编码可用于在HTTP环境下传递较长的标识信息.在其他应用程序中,也常常需要把二进制数据编码为适合放在URL(包括隐藏表单域)中的形式.此时,采用Base64编码不仅比较简短,同时也具有不可 ...

  2. Javascript之document对象用法(很重要)

    一.找到元素 document.getElementById("id"):根据id找层,最多找一个 var a=document.getElementById("id&q ...

  3. Ubuntu Nginx下配置网站ssl实现https访问

    最近在看  HTTP权威指南   看到介绍了HTTPS的ssl,自己就动手测试了下,将步骤记录下 HTTPS简介 什么是HTTPS?百科是这样解释的.HTTPS(全称:Hyper Text Trans ...

  4. 1185: [HNOI2007]最小矩形覆盖 - BZOJ

      就是一道凸包(枚举凸包的边作为矩形的一条边)的裸题,只是不太好打,所以犹豫到今天才打 不说了,说起AC都是泪啊,因为没有精度判断,没有判重(算距离时除0了)错了好久 拍了好久都和标称是一样的,因为 ...

  5. Jenkins 十一: 构建Maven项目

    1. 点击“新建”,在“Item名称”栏输入要构建的项目名,比如“Maven_project”,选择“构建一个maven项目”,点击“OK”按钮. 2. 找到“源码管理”-> “Subversi ...

  6. Yaffs文件系统简介

    1 简介 1.1 应用场合 Yaffs(Yet Another Flash File System)文件系统是专门针对NAND闪存设计的嵌入式文件系统,目前有YAFFS和YAFFS2两个版本,两个版本 ...

  7. HTML 5 学习 (1)

    一.HTML的发展 20世纪70年代~80年代之间HTML正式诞生,但是没有一个统一的标准,显示内容比较单一.在netscape上显示的网页可能在ie5中无法正常显示,反之亦然. 1998年,HTML ...

  8. MessageFormat.format 包含单引号引起的不可替换

    MessageFormat.format("region = '{0}'", "en");实际结果是region = {0}如果需要被替换的话,需要用双单引号 ...

  9. [ZZ] 深度学习三巨头之一来清华演讲了,你只需要知道这7点

    深度学习三巨头之一来清华演讲了,你只需要知道这7点 http://wemedia.ifeng.com/10939074/wemedia.shtml Yann LeCun还提到了一项FAIR开发的,用于 ...

  10. [android] 手机卫士绑定sim卡

    更新: 收不到启动广播,查看知乎,好像是说高版本的系统都禁止了 还可以通过adb发送开机广播 adb shell am broadcast -a android.intent.action.BOOT_ ...