相比以前的RMQ不同的是,这是一个二维的ST算法
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define N 300
int minbest[][][N][N];
int maxbest[][][N][N];
///int lg[N];
int getmax(int a,int b,int c,int d)
{
return max(max(a,b),max(c,d));
}
int getmin(int a,int b,int c,int d)
{
return min(min(a,b),min(c,d));
}
int lg(int x)
{
if(x == ) return ;
return lg(x>>) + ;
}
int main()
{
int n,b,k;
while(EOF != scanf("%d%d%d",&n,&b,&k))
{
//lg[0] = -1;
/* for(int i = 1; i <= n; i++)
if(i&(i-1) == 0)
lg[i] = lg[i-1] + 1;
else lg[i] = lg[i-1];*/
for(int i = ; i <= n; i++)
{
for(int j = ; j <= n ; j++)
{
int num;
scanf("%d",&num);
minbest[][][i][j] = maxbest[][][i][j] = num;
}
}
for(int i = ; (<<i) <= n ; i++)
for(int j = ; (<<j) <= n ; j++)
{
if(i + j)
{
for(int x = ; x <= n+-(<<i); x++)
for(int y = ; y <= n+-(<<j); y++)
{
if(i)
{
minbest[i][j][x][y] = min(minbest[i-][j][x][y],minbest[i-][j][x+ (<<i-)][y]);
maxbest[i][j][x][y] = max(maxbest[i-][j][x][y],maxbest[i-][j][x+ (<<i-)][y]);
}
if(j)
{
minbest[i][j][x][y] = min(minbest[i][j-][x][y],minbest[i][j-][x][y + (<<j-)]);
maxbest[i][j][x][y] = max(maxbest[i][j-][x][y],maxbest[i][j-][x][y + (<<j-)]);
}
}
}
} int tmp = lg(b) ;
///cout<<tmp<<endl;
while(k--)
{
int x,y;
scanf("%d%d",&x,&y);
int mi = getmin(minbest[tmp][tmp][x][y],minbest[tmp][tmp][x+b-(<<tmp)][y],
minbest[tmp][tmp][x][y+b-(<<tmp)],minbest[tmp][tmp][x+b-(<<tmp)][y+b-(<<tmp)]
);
int ma = getmax(maxbest[tmp][tmp][x][y],maxbest[tmp][tmp][x+b-(<<tmp)][y],
maxbest[tmp][tmp][x][y+b-(<<tmp)],maxbest[tmp][tmp][x+b-(<<tmp)][y+b-(<<tmp)]
);
///cout<<ma<<" "<<mi<<endl;
printf("%d\n",ma - mi);
}
}
return ;
}