Luogu2839 Middle 主席树、二分答案

时间:2023-03-09 15:23:37
Luogu2839 Middle 主席树、二分答案

题目传送门:https://www.luogu.org/problemnew/show/P2839

题目大意:给出一个长度为$N$的序列与$Q$次询问,每次询问左端点在$[a,b]$,右端点在$[c,d]$的区间中最大的中位数,强制在线(本题中的中位数定义与平常不同,设某区间长度为$L$,则在从小到大排序后的序列中(编号从$0$开始),其中位数为第$\lfloor L/2 \rfloor$号元素)$N,Q \leq 2 \times 10^4$


这鬼题让我知道主席树可以用于除第$K$大以外的问题$qwq$

观察$100 \%$的数据规模,$O(nQ)$的做法都比较吃力,所以考虑使用$log$数据结构进行维护获得$O(Qlogn)$或者$O(Qlog^2n)$的算法。故考虑到使用线段树进行维护,同时使用二分的方式寻找每个询问的答案,

其中check的内容就是寻找是否有满足该询问条件的区间,在其中(大于等于当前二分的数的数字个数)要大于等于(小于当前二分的数的数字个数)。断句略奇怪
不妨将大于等于当前二分的数的数字的权值设为1,小于当前二分的数的数字的权值设为-1,check的内容就等价于询问$$max(\sum_{i=x}^y w_i) \geq 0 (x \in {[a , b]} , y \in{[c , d]})$$是否成立。

所以想到对于每个数字建立一个线段树存储权值,在每一次二分询问时求出对应线段树中$x \in {[a , b]} , y \in{[c , d]},\sum_{i=b+1}^{c-1} w_i + max(\sum_{i=x}^b w_i)+max(max(\sum_{i=c}^y w_i))$是否大于0,刚好这三个式子对应区间和、区间最大后缀、区间最大前缀,可以使用线段树解决。
然后发现对于排序后的相邻两数只有一个$1$变成$-1$,就可以使用主席树将空间压到允许范围内了
时间复杂度为$O(Qlog^2n)$,空间复杂度为$O(nlogn)$,符合本题数据范围

 #include<bits/stdc++.h>
 #define MAXN 100002
 using namespace std;
 inline int read(){
     ;
     ;
     char c = getchar();
     while(!isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }
 ];
 inline void print(int x){
     ;
     )
         fwrite( , stdout);
     else{
         ){
             x = -x;
             fwrite( , stdout);
         }
         while(x){
                output[--dirN] = x %  + ;
             x /= ;
         }
         fwrite(output + dirN ,  , strlen(output + dirN) , stdout);
     }
     fwrite( ,  , stdout);
 }
 struct node{
     int sum , lMax , rMax , l , r;
 }Tree[ * MAXN];
 struct sortNum{//用于排序
     int ind , num;
     bool operator <(sortNum a){
         return num < a.num;
     }
 }sorted[MAXN];
 int num[MAXN] , root[MAXN];
  , rMax , rSum , lMax , lSum;

 inline int max(int a , int b){
     return a > b ? a : b;
 }

 inline void swap(int &a , int &b){
     int t = a;
     a = b;
     b = t;
 }

 //初始化一个所有叶子结点权值都为1的线段树
 void init(int dir , int l , int r){
     Tree[dir].sum = Tree[dir].lMax = Tree[dir].rMax = r - l + ;
     if(l != r){
         init(Tree[dir].l = ++cntNode , l , l + r >> );
         init(Tree[dir].r = ++cntNode , (l + r >> ) +  , r);
     }
 }

 inline void pushup(int dir){
     Tree[dir].lMax = max(Tree[Tree[dir].l].lMax , Tree[Tree[dir].l].sum + Tree[Tree[dir].r].lMax);
     Tree[dir].rMax = max(Tree[Tree[dir].r].rMax , Tree[Tree[dir].r].sum + Tree[Tree[dir].l].rMax);
     Tree[dir].sum = Tree[Tree[dir].l].sum + Tree[Tree[dir].r].sum;
 }

 //更新版本
 void update(int now , int last , int l , int r , int dir){
     if(l == r){
         Tree[now].lMax = Tree[now].rMax = ;
         Tree[now].sum = -;
     }
     else{
         ){
             Tree[now].l = Tree[last].l;
             update(Tree[now].r = ++cntNode , Tree[last].r , (l + r >> ) +  , r , dir);
         }
         else{
             Tree[now].r = Tree[last].r;
             update(Tree[now].l = ++cntNode , Tree[last].l , l , l + r >>  , dir);
         }
         pushup(now);
     }
 }

 //区间和
 int findSum(int dir , int l , int r , int L , int R){
     if(L >= l && R <= r)
         return Tree[dir].sum;
     ;
     )
         sum += findSum(Tree[dir].l , l , r , L , L + R >> );
     )
         sum += findSum(Tree[dir].r , l , r , (L + R >> ) +  , R);
     return sum;
 }

 //区间最大后缀
 void findRightMax(int dir , int l , int r , int L , int R){
     if(L >= l && R <= r){
         rMax = max(rMax , Tree[dir].rMax + rSum);
         rSum += Tree[dir].sum;
         return;
     }
     )
         findRightMax(Tree[dir].r , l , r , (L + R >> ) +  , R);
     )
         findRightMax(Tree[dir].l , l , r , L , L + R >> );
 }

 //区间最大前缀
 void findLeftMax(int dir , int l , int r , int L , int R){
     if(L >= l && R <= r){
         lMax = max(lMax , Tree[dir].lMax + lSum);
         lSum += Tree[dir].sum;
         return;
     }
     )
         findLeftMax(Tree[dir].l , l , r , L , L + R >> );
     )
         findLeftMax(Tree[dir].r , l , r , (L + R >> ) +  , R);
 }

 //二分check
 //为了方便处理这里的代码与上面的公式稍有不同
 inline bool check(int mid , int a , int b , int c , int d){
     lSum = rSum = ;
     lMax = rMax = -;
     findRightMax(root[mid] , a , b -  ,  , N);
     findLeftMax(root[mid] , c +  , d ,  , N);
      , N) + lMax + rMax >= ;
 }

 int main(){
     N = read();
     ;
      ; i <= N ; i++)
         num[sorted[i].ind = i] = sorted[i].num = read();
     init(root[] =  ,  , N);
     sort(sorted +  , sorted + N + );
      ; i <= N ; i++)
         update(root[i + ] = ++cntNode , root[i] ,  , N , sorted[i].ind);
     for(int Q = read() ; Q ; Q--){
          , b = (read() + lastans) % N +  , c = (read() + lastans) % N +  , d = (read() + lastans) % N + ;
         if(a > b)
             swap(a , b);
         if(a > c)
             swap(a , c);
         if(a > d)
             swap(a , d);
         if(b > c)
             swap(b , c);
         if(b > d)
             swap(b , d);
         if(c > d)
             swap(c , d);
          , r = N;
         while(l < r){
              >> ;
             if(check(mid , a , b , c , d))
                 l = mid;
             else
                 r = mid - ;
         }
         printf("%d\n" , lastans = sorted[l].num);
     }
     ;
 }