BZOJ 1391 [Ceoi2008]order

时间:2022-06-09 19:21:08

1391: [Ceoi2008]order

Description

有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成。 现在给出这些参数,求最大利润

Input

第一行给出 N,M(1<=N<=1200,1<=M<=1200) 下面将有N块数据,每块数据第一行给出完成这个任务能赚到的钱(其在[1,5000])及有多少道工序 接下来若干行每行两个数,分别描述完成工序所需要的机器编号及租用它的费用(其在[1,20000]) 最后M行,每行给出购买机器的费用(其在[1,20000])

Output

最大利润

Sample Input

2 3
100 2
1 30
2 20
100 2
1 40
3 80
50
80
110

Sample Output

50

HINT

BZOJ 1391 [Ceoi2008]order


  此题颇为有趣。一看便能知道是最大权闭合子图。但怎么区分租赁与购买呢?做了此题,再与BZOJ 1497 [NOI2006]最大获利比较,一下子我就明白了。

  此题中,n个工作的获益先加在一起。源点S与n个工作连一条流量为获利的边,m台机器与汇点T连一条流量为购买费用的边,工作与机器之间连上相应的租赁费用。这样,跑一遍最大流(最小割),然后sum-maxflow即可。

  为什么是对的?因为租赁可以理解为暂时的专属的,而购买就是永恒的普遍的。这在建图中体现的很明显。

  而NOI那道题中,只不过没有租赁,所以工作与机器之间是inf。

  很有意思啊!

 /**************************************************************
Problem: 1391
User: Doggu
Language: C++
Result: Accepted
Time:4252 ms
Memory:47844 kb
****************************************************************/ #include <cstdio>
#include <cstring>
#include <algorithm>
template<class T>inline void readin(T &res) {
static char ch;T flag=;
while((ch=getchar())<''||ch>'')if(ch=='-')flag=-;
res=ch-;while((ch=getchar())>=''&&ch<='')res=(res<<)+(res<<)+ch-;res*=flag;
} const int N = ;
const int M = ;
struct Edge {int v,upre,cap,flow;}g[M];
int head[N], ne=-;
inline void adde(int u,int v,int cap) {
g[++ne]=(Edge){v,head[u],cap,};head[u]=ne;
g[++ne]=(Edge){u,head[v],,};head[v]=ne;
} #include <queue>
std::queue<int> q;
int n, m, s, t, sum, d[N], cur[N];
bool BFS() {
while(!q.empty()) q.pop();
memset(d,,sizeof(d));
q.push(s);d[s]=;
while(!q.empty()) {
int u=q.front();q.pop();
for( int i = head[u]; i != -; i = g[i].upre ) {
int v=g[i].v;
if(!d[v]&&g[i].cap>g[i].flow) q.push(v), d[v]=d[u]+;
}
}
return d[t];
}
int DFS(int u,int a) {
if(u==t||a==) return a;
int flow=, f;
for( int &i = cur[u]; i != -; i = g[i].upre ) {
int v=g[i].v;
if(d[v]==d[u]+&&(f=DFS(v,std::min(a,g[i].cap-g[i].flow)))>) {
flow+=f;a-=f;
g[i].flow+=f;g[i^].flow-=f;
if(a==) break;
}
}
if(flow==) d[u]=;
return flow;
}
void maxflow() {
int flow=;
while(BFS()) {
memcpy(cur,head,sizeof(head));
flow+=DFS(s,0x3f3f3f3f);
}
printf("%d\n",sum-flow);
} int main() {
memset(head,-,sizeof(head));
readin(n);readin(m);s=;t=n+m+;
for( int i = , w, a, b, c; i <= n; i++ ) {
readin(w);readin(b);
adde(s,i,w);sum+=w;
for( int j = ; j <= b; j++ ) {
readin(a);readin(c);
adde(i,n+a,c);
}
}
for( int i = ,c; i <= m; i++ ) {
readin(c);
adde(n+i,t,c);
}
maxflow();
return ;
}

dinic最小割建图