Description
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than O(n2
)
. - There is only one duplicate number in the array, but it could be repeated more than once.
思路
题意:给定一个数组,包含n + 1个数,其数值在1-n之间,证明至少存在一个重复的数。假设仅有一个重复的数,找出它。
要求:
- 假设数组仅为可读,不允许改变数组
- 空间复杂度为O(1),时间复杂度要求小于O(n2)
题解:由于不允许改变数组,因此不能将数组排序,又因为额外的空间仅允许O(1),因此,不考虑hash。复杂度不能为O(n2),所以不能暴力求解。
方法一:为了降低复杂度,我们可以考虑二分,将复杂度降低为O(nlogn),每次二分,然后遍历数组,查看小于等于mid的数,如果个数小于等于mid,则证明重复的数小于等于mid,反之在[mid + 1,right]的区间。
方法二:此种方法利用floyd判圈算法的原理来求解,具体可以查看这里:click here
class Solution {
public:
//9ms
int findDuplicate(vector<int>& nums) {
if (nums.size() > ){
int slow = nums[],fast = nums[nums[]];
while (slow != fast){
slow = nums[slow];
fast = nums[nums[fast]];
}
fast = ;
while (slow != fast){
slow = nums[slow];
fast = nums[fast];
}
return slow;
}
return -;
} //9ms
int findDuplicate(vector<int>& nums) {
int left = ,right = nums.size() - ;
while (left < right - ){
int mid = left + ((right - left) >> );
int cnt = ;
for (auto val : nums){
if (val <= mid) cnt++;
}
if (cnt <= mid) left = mid;
else right = mid;
}
return left;
}
};