设A(n)为a中n的个数,B(n)为b中n的个数。如果只考虑加法显然是一个卷积,减法翻转一下也显然是一个卷积。
问题在于两者都有。容易想到分开处理。那么可以考虑分治。即对于值域区间[l,r],分别计算A[l,mid]和B[mid+1,r]的贡献及A[mid+1,r]和B[l,mid]的贡献,然后再递归处理[l,mid]和[mid+1,r]。一定程度上类似于cdq分治。
注意结果可能爆int,用NTT的话不太方便。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 270000
const double PI=3.14159265358979324;
struct complex
{
double x,y;
complex operator +(const complex&a) const
{
return (complex){x+a.x,y+a.y};
}
complex operator -(const complex&a) const
{
return (complex){x-a.x,y-a.y};
}
complex operator *(const complex&a) const
{
return (complex){x*a.x-y*a.y,x*a.y+y*a.x};
}
}c[N],d[N];
int T,n,m,q,a[N],b[N],r[N];
long long f[N];
void DFT(int n,complex *a,int p)
{
for (int i=;i<n;i++) if (i<r[i]) swap(a[i],a[r[i]]);
for (int i=;i<=n;i<<=)
{
complex wn=(complex){cos(*PI/i),p*sin(*PI/i)};
for (int j=;j<n;j+=i)
{
complex w=(complex){,};
for (int k=j;k<j+(i>>);k++,w=w*wn)
{
complex x=a[k],y=w*a[k+(i>>)];
a[k]=x+y,a[k+(i>>)]=x-y;
}
}
}
}
void mul(int n,complex *a,complex *b)
{
for (int i=;i<n;i++) r[i]=(r[i>>]>>)|(i&)*(n>>);
for (int i=;i<n;i++) a[i].y=a[i].x-b[i].x,a[i].x=a[i].x+b[i].x;
DFT(n,a,);
for (int i=;i<n;i++) a[i]=a[i]*a[i];
DFT(n,a,-);
for (int i=;i<n;i++) a[i].x=a[i].x/n/;
}
void solve(int l,int r)
{
if (l==r) {f[]+=1ll*a[l]*b[l];return;}
int mid=l+r>>;
solve(l,mid);
solve(mid+,r);
int t=;while (t<r-l+) t<<=;
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=l;i<=mid;i++) c[i-l].x=a[i];
for (int i=mid+;i<=r;i++) d[i-mid-].x=b[i];
mul(t,c,d);
for (int i=l+mid+;i<=mid+r;i++) f[i]+=(long long)(c[i-l-mid-].x+0.5);
for (int i=;i<t;i++) c[i].x=c[i].y=d[i].x=d[i].y=;
for (int i=mid+;i<=r;i++) c[i-mid-].x=a[i];
for (int i=l;i<=mid;i++) d[mid-i].x=b[i];
mul(t,c,d);
for (int i=;i<=r-l;i++) f[i]+=(long long)(c[i-].x+0.5);
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4836.in","r",stdin);
freopen("bzoj4836.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
T=read();
while (T--)
{
n=read(),m=read(),q=read();
memset(f,,sizeof(f));
memset(a,,sizeof(a));memset(b,,sizeof(b));
int x=,y;
for (int i=;i<=n;i++) x=max(y=read(),x),a[y]++;
for (int i=;i<=m;i++) x=max(y=read(),x),b[y]++;
solve(,x);
while (q--) printf(LL,f[read()]);
}
return ;
}