n个灯围成一圈, 1左边是n。 有两种状态, 1是亮, 0是不亮。 如果一个灯, 它左边的灯是亮的, 那么下一时刻这个灯就要改变状态, 1变为0, 0变为1。 给出初始状态和时间t, 问t时刻每个灯的状态是什么。
ai = (a(i-1)+ai)%2, 根据这个构建矩阵。
/*
1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 1
*/
// 对这个矩阵进行快速幂, 结果与初始状态相乘就好。
#include <iostream>
#include <vector>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <string>
#include <queue>
#include <stack>
#include <bitset>
using namespace std;
#define pb(x) push_back(x)
#define ll long long
#define mk(x, y) make_pair(x, y)
#define lson l, m, rt<<1
#define mem(a) memset(a, 0, sizeof(a))
#define rson m+1, r, rt<<1|1
#define mem1(a) memset(a, -1, sizeof(a))
#define mem2(a) memset(a, 0x3f, sizeof(a))
#define rep(i, n, a) for(int i = a; i<n; i++)
#define fi first
#define se second
typedef pair<int, int> pll;
const double PI = acos(-1.0);
const double eps = 1e-;
const int mod = 1e9+;
const int inf = ;
const int dir[][] = { {-, }, {, }, {, -}, {, } };
int n;
struct Matrix
{
int a[][];
Matrix() {
mem(a);
}
};
Matrix operator * (Matrix a, Matrix b) {
Matrix c;
for(int i = ; i<n; i++) {
for(int j = ; j<n; j++) {
for(int k = ; k<n; k++) {
c.a[i][j] += a.a[i][k]*b.a[k][j];
c.a[i][j] %= ;
}
}
}
return c;
}
Matrix operator ^ (Matrix a, ll b) {
Matrix tmp;
for(int i = ; i<n; i++)
tmp.a[i][i] = ;
while(b) {
if(b&)
tmp = tmp*a;
a = a*a;
b>>=;
}
return tmp;
}
int main()
{
int m;
string s;
while(cin>>m) {
cin>>s;
n = s.size();
Matrix tmp;
for(int i = ; i<n; i++) {
tmp.a[i][i] = ;
tmp.a[i][(i-+n)%n] = ;
}
Matrix b = tmp^m;
Matrix a;
for(int i = ; i<s.size(); i++) {
a.a[i][] = s[i]-'';
}
Matrix c = b*a;
for(int i = ; i<s.size(); i++) {
printf("%d", c.a[i][]);
}
cout<<endl;
}
return ;
}