HYSBZ 2818 gcd

时间:2023-03-09 13:38:31
HYSBZ  2818 gcd
 /**
大意: 给定整数N,1<= x,y <= N 求解有多少gcd(x,y) 为素数 n=10^7
思路: 首先考虑到n 如此之大,用的快速求欧拉函数。
先默认 y〉x
分析: gcd(x,y) =2, gcd(x,y) = 3, gcd(x,y) = 5, gcd(x,y) = 7。。。。
即 gcd(x,y/2) =1, gcd(x, y/3) =1, gcd(x, y/5) =1, gcd(x,y/7) = 1 。。。。
以gcd(x,y) = 2 为例 -----> gcd(x,y/2) = 1;
就是求比y/2小的所有与y/2 互质数的个数。。。y取值为2,4,6,8,10.。。。
所以siga(gcd(x,2)=2 + gcd(x,4) =2 + gcd( x,6) =2 + 。。。)=
----->siga(gcd(x,1)=1 + gcd(x,2) =1 + gcd( x,3) =1 + 。+ gcd(x,n/2)=1)
其他的同理。。。
所以先预处理 小于n 的所有互质数的个数 s[i] = s[i-1]+phi[i];
使用时
if(n>=prime[i]){
ans += 2*s[n/prime[i]]-1; (也有可能x 〉y)
}
**/ #include <iostream>
#include <cstring>
#include <algorithm>
using namespace std; #define Max 10000000 long long s[Max+],f[Max+],phi[Max+];
int prime[Max/];
bool flag[Max+];
int num;
void init()
{
int i,j;
num=;
memset(flag,,sizeof(flag));
phi[]=;
for(i=;i<=Max;i++){//欧拉筛选
if(flag[i])
{
prime[num++]=i;
phi[i]=i-;
}
for(j=;j<num && prime[j]*i<=Max;j++)
{
flag[i*prime[j]]=false;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
else phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
s[] =;
for(int i=;i<Max;i++)
s[i] = s[i-]+phi[i];
} int main(){
init();
long long n;
while(cin>>n){
long long ans =;
for(int i=;i<num;i++)
if(n>=prime[i]){
ans += *s[n/prime[i]]-;
}
cout<<ans<<endl;
}
}