大数据学习——flume日志分类采集汇总

时间:2023-03-09 13:33:03
大数据学习——flume日志分类采集汇总

1. 案例场景

A、B两台日志服务机器实时生产日志主要类型为access.log、nginx.log、web.log

现在要求:

把A、B 机器中的access.log、nginx.log、web.log 采集汇总到C机器上然后统一收集到hdfs中。

但是在hdfs中要求的目录为:

/source/logs/access/20160101/**

/source/logs/nginx/20160101/**

/source/logs/web/20160101/**

2. 场景分析

大数据学习——flume日志分类采集汇总

3. 数据流程处理分析

大数据学习——flume日志分类采集汇总

4.  实现

服务器A对应的IP为 192.168.200.102
服务器B对应的IP为 192.168.200.103
服务器C对应的IP为 192.168.200.101

① 在服务器A和服务器B上的$FLUME_HOME/conf 创建配置文件 exec_source_avro_sink.conf 文件内容为

    exec_source_avro_sink.conf  文件内容为

# Name the components on this agent
a1.sources = r1 r2 r3
a1.sinks = k1
a1.channels = c1 # Describe/configure the source
a1.sources.r1.type = exec
a1.sources.r1.command = tail -F /root/data/access.log
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = static
## static拦截器的功能就是往采集到的数据的header中插入自己定## 义的key-value对
a1.sources.r1.interceptors.i1.key = type
a1.sources.r1.interceptors.i1.value = access a1.sources.r2.type = exec
a1.sources.r2.command = tail -F /root/data/nginx.log
a1.sources.r2.interceptors = i2
a1.sources.r2.interceptors.i2.type = static
a1.sources.r2.interceptors.i2.key = type
a1.sources.r2.interceptors.i2.value = nginx a1.sources.r3.type = exec
a1.sources.r3.command = tail -F /root/data/web.log
a1.sources.r3.interceptors = i3
a1.sources.r3.interceptors.i3.type = static
a1.sources.r3.interceptors.i3.key = type
a1.sources.r3.interceptors.i3.value = web # Describe the sink
a1.sinks.k1.type = avro
a1.sinks.k1.hostname = 192.168.200.101
a1.sinks.k1.port = # Use a channel which buffers events in memory
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = # Bind the source and sink to the channel
a1.sources.r1.channels = c1
a1.sources.r2.channels = c1
a1.sources.r3.channels = c1
a1.sinks.k1.channel = c1

② 在服务器C上的$FLUME_HOME/conf 创建配置文件 avro_source_hdfs_sink.conf  文件内容为

#定义agent名, source、channel、sink的名称
a1.sources = r1
a1.sinks = k1
a1.channels = c1 #定义source
a1.sources.r1.type = avro
a1.sources.r1.bind = 0.0.0.0
a1.sources.r1.port = #添加时间拦截器
a1.sources.r1.interceptors = i1
a1.sources.r1.interceptors.i1.type = org.apache.flume.interceptor.TimestampInterceptor$Builder #定义channels
a1.channels.c1.type = memory
a1.channels.c1.capacity =
a1.channels.c1.transactionCapacity = #定义sink
a1.sinks.k1.type = hdfs
a1.sinks.k1.hdfs.path=hdfs://192.168.200.101:9000/source/logs/%{type}/%Y%m%d
a1.sinks.k1.hdfs.filePrefix =events
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text
#时间类型
a1.sinks.k1.hdfs.useLocalTimeStamp = true
#生成的文件不按条数生成
a1.sinks.k1.hdfs.rollCount =
#生成的文件按时间生成
a1.sinks.k1.hdfs.rollInterval =
#生成的文件按大小生成
a1.sinks.k1.hdfs.rollSize =
#批量写入hdfs的个数
a1.sinks.k1.hdfs.batchSize =
flume操作hdfs的线程数(包括新建,写入等)
a1.sinks.k1.hdfs.threadsPoolSize=
#操作hdfs超时时间
a1.sinks.k1.hdfs.callTimeout= #组装source、channel、sink
a1.sources.r1.channels = c1
a1.sinks.k1.channel = c1

③ 配置完成之后,在服务器A和B上的/root/data有数据文件access.log、nginx.log、web.log。先启动服务器C上的flume,启动命令
在flume安装目录下执行 :
bin/flume-ng agent -c conf -f conf/avro_source_hdfs_sink.conf -name a1 -Dflume.root.logger=DEBUG,console

然后在启动服务器上的A和B,启动命令
在flume安装目录下执行 :
bin/flume-ng agent -c conf -f conf/exec_source_avro_sink.conf -name a1 -Dflume.root.logger=DEBUG,console

5.  项目实现截图

大数据学习——flume日志分类采集汇总

大数据学习——flume日志分类采集汇总