BZOJ 3160: 万径人踪灭 FFT+快速幂+manacher

时间:2022-12-26 11:50:26

BZOJ 3160: 万径人踪灭

题目传送门

【题目大意】

  给定一个长度为n的01串,求有多少个回文子序列?

  回文子序列是指从原串中找出任意个,使得构成一个回文串,并且位置也是沿某一对称轴对称。

  假如x是对称轴,若 i 和 j 是对称且di=dj,i,j可以视为可行的一组。可行组数记为f[x]。

  \(f[x]=\sum_{i=1}^{x-1}[d[x-i]==d[x+i]]\)

  以x为对称轴的答案是2^(f[x])-1。

  可以观察发现将d[i]=1的A[i]标为1,A与A做一次卷积,即可得出d[i]=1的f[]。(因为\(p^{x-i}*p^{x+i}=p^x\))

  对d[i]=1的做一次卷积,对d[i]=0的做一次卷积,加起来就是完整的f[]。

  由于单个连续一段的回文串不算,做一次manacher,减掉就行了。(ps:感觉这是强行加上去的条件,增加码量……)

  正解:FFT+快速幂+manacher

#include<cstdio>
#include<cmath>
#include<cstring>
#include<algorithm> #define imax(a,b) ((a>b)?(a):(b))
#define imin(a,b) ((a<b)?(a):(b)) using namespace std; typedef long long ll; const ll mods=1000000007;
const int N=101000;
const double pi=acos(-1.0);
char st[N];
int n,d[N<<1],dn;
int nn,k,F[N<<1];
ll sum,tp[N<<2],power[N<<2];
struct Complex
{
double real,image;
Complex() {}
Complex(double _real,double _image)
{
real=_real; image=_image;
}
friend Complex operator + (Complex A,Complex B) { return Complex(A.real+B.real,A.image+B.image); }
friend Complex operator - (Complex A,Complex B) { return Complex(A.real-B.real,A.image-B.image); }
friend Complex operator * (Complex A,Complex B) { return Complex(A.real*B.real-A.image*B.image,A.image*B.real+A.real*B.image); }
} A[N<<2],B[N<<2];
int rev[N<<2]; void FFT(Complex *A,int n,int DFT)
{
for(int i=0;i<n;i++) if(i<rev[i]) swap(A[i],A[rev[i]]);
for(int s=1;(1<<s)<=n;s++)
{
int mi=(1<<s);
Complex wn=Complex(cos(2*pi/mi),DFT*sin(2*pi/mi));
for(int t=0;t<n;t+=mi)
{
Complex w=Complex(1,0);
for(int j=0;j<(mi>>1);j++)
{
Complex u=A[t+j],v=w*A[t+j+(mi>>1)];
A[t+j]=u+v; A[t+j+(mi>>1)]=u-v;
w=w*wn;
}
}
}
if(DFT==-1) for(int i=0;i<n;i++) A[i].real/=n,A[i].image/=n;
} ll manacher()
{
F[1]=0; int p=1; ll re=0ll;
for(int i=2;i<=dn;i++)
{
F[i]=imax(0,imin(F[2*p-i],F[p]+p-i));
while(d[i+F[i]+1]==d[i-F[i]-1]) F[i]++;
if(F[i]+i>F[p]+p) p=i;
re=(re+((F[i]+1)>>1))%mods;
}
return re;
} ll Pow(ll x,ll y)
{
ll s=1ll;
for(;y;y>>=1,x=x*x%mods) s=s*x%mods;
return s;
} int main()
{
scanf("%s",st); n=strlen(st);
dn=1; d[1]=4;
for(int i=1;i<=n;i++)
{
d[++dn]=3;
d[++dn]=st[i-1]-'a';
} d[++dn]=3; d[++dn]=5; sum=(mods-manacher())%mods; int m=n<<1; k=0;
for(nn=1;nn<=m;nn<<=1) k++;
for(int i=0;i<nn;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<(k-1)); power[0]=1ll;
for(int i=1;i<=nn;i++) power[i]=(power[i-1]<<1)%mods; for(int i=1;i<=n;i++) if(st[i-1]=='a') A[i].real=1;
FFT(A,nn,1); for(int i=0;i<=nn;i++) B[i]=A[i]*A[i]; memset(A,0,sizeof(A));
for(int i=1;i<=n;i++) if(st[i-1]=='b') A[i].real=1;
FFT(A,nn,1); for(int i=0;i<=nn;i++) B[i]=B[i]+A[i]*A[i]; FFT(B,nn,-1); for(int i=1;i<nn;i++) tp[i]=ll(B[i].real+0.5);
//for(int i=1;i<nn;i++) printf("%lld\n",tp[i]);
for(int i=1;i<nn;i++) (sum+=power[(tp[i]+1)>>1]-1)%=mods; printf("%lld\n",(sum%mods+mods)%mods);
return 0;
}