最大流首次体验感受——
什么是最大流呢?
从一个出发点(源点),走到一个目标点(汇点),途中可以经过若干条路,每条路有一个权值,表示这条路可以通过的最大流量。
最大流就是从源点到汇点,可以通过的最大流量。
接下来我们看一个图——
图1
这个图中,s是源点,t是汇点。期间可以经过2, 3, 4, 5, 6几个点。每条边上有两个权值,其中第一个表示当前通过这条边的流量,第二个表示这条边最大可以通过的流量。
最佳情况,即最大可以通过的流量的一种情况是这样的——
图2
但还有一种情况,同样可以达到最大流——
图3
这里得到两个结论:
1. 每条路径中都有至少一条边是满的。
2. 最大流可能不止一种情况。
接下来我们再看另一个图:
图4
如果在这个图上找最大流该怎么找?
这样?
图5
不对,这个图乍一看好像满足每条路径上都有一个满流的边这个条件,但是其实还有更大的流——
图6
怎么办呢?
我们可以通过这个方式从图5变到图6——
图7
这里我们的可以这样理解,在我们走出图5 的结果以后,我们允许图中出现图7中的绿色的边,然后我们就得到了绿色的数字所标示出的一条新路,通过这条路径,我们就获得了最大流。
如果我们获得了一个流量图,这个流量图中每条路径上都有一条边是满流了,如何判断这是不是一个最大流的图呢?通过上面的方法,我们在通过某条边之后,在这两个点之间构造一条反向的并且和通过的流量大小相同的边(称为反向边)。这样,就可能产生一条新路,使整个图中的流量增加。那么,我们不断地构造这种边,直到无法寻找到新的路径为止(称为增广路径),是不是就得到了最大流呢?
总结起来,每次找到一条增广路,增广路中每条边的值,都减去路径中,边值最小的边的值(读起来很凹口是不是?多读几遍就好了)。同时,还要给每条边都加上反向边。重复寻找,直到找不到新的路径,我们就获得了这个图的最大流。
注意,
- 每次寻找增广路径后,我们都会将原图更改,这样,我们会得到一个新的图。
- 在获得最大流的图之前,我们获得的每张图都称为残余网络。原始图也可以视为残余网络。
以上讲的是寻找最大流的思想。
但是,寻找增广路径的方法不止一种。
我最直接想到的方法,使用dfs多次搜索这张图,直到找不到为止。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std; const int N = ;
const int M = ; int n, m;
int mp[N][N]; //保存地图信息,有向图
bool vis[N][N]; //dfs时标记使用
int ans; //最终结果 void init()
{
memset(mp, , sizeof(mp));
memset(vis, , sizeof(vis));
for(int i = ; i < n; i++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
mp[a][b] += c;
}
ans = ;
} int dfs(int x, int maxn)
{
if(x == m)
{
ans += maxn; //每次走到汇点后增加的流量
return maxn;
}
int flow = ;
for(int i = ; i <= m; i++)
{
if(mp[x][i] > && !vis[x][i])
{
vis[x][i] = ;
int mmaxn = maxn < mp[x][i] ? maxn : mp[x][i]; //取本路径中所可以通过的最小值
int mid;
if(mmaxn > ) mid = dfs(i, mmaxn); //如果此路仍然是通路,则继续搜索
if(mid > )
{
mp[x][i] -= mid; //已经经过的路要减去耗费的流量
mp[i][x] += mid; //反向路(弧)增加耗费的流量
maxn -= mid; //走过一条通路后剩余的流量
flow += mid; //已经消耗的流量
if(maxn == ) break;
}
}
}
return flow;
} int main()
{
//freopen("test.in", "r", stdin);
while(~scanf("%d%d", &n, &m))
{
init();
while(dfs(, M) > ) memset(vis, , sizeof(vis));
printf("%d\n", ans);
}
return ;
}
dfs
但是后来我突然想到。dfs找到的不一定最短路,每次搜索可能会浪费时间,然后又改成了bfs,这种方法也就是常说的Edmonds-Karp算法。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int N = ;
const int M = ; int mp[N][N];
int fm[N]; //用于记录路径
int val[N];
int n, m;
int ans; void init()
{
memset(mp, , sizeof(mp));
for(int i = ; i < n; i++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
mp[a][b] += c;
}
ans = ;
} void work()
{
while()
{
memset(val, , sizeof(val));
val[] = M;
queue<int> que;
que.push();
while(!que.empty()) //spfa,寻找最短路
{
int k = que.front();
que.pop();
if(k == m) break;
for(int i = ; i <= m; i++)
{
if(!val[i] && mp[k][i] > )
{
fm[i] = k;
que.push(i);
val[i] = val[k] < mp[k][i] ? val[k] : mp[k][i];
}
}
}
if(val[m] == ) break; //当前图上找不到源点到汇点的通路,则退出 for(int i = m; i != ; i = fm[i])
{
mp[fm[i]][i] -= val[m]; //经过的路径上要减去耗费的流量
mp[i][fm[i]] += val[m]; //反向路径(弧)增加相应的路径
}
//printf("%5d\n", val[m]);
ans += val[m]; //结果增加新增的流量
}
} void outit()
{
printf("%d\n", ans);
} int main()
{
while(~scanf("%d%d", &n, &m))
{
init();
work();
outit();
}
return ;
}
bfs
接下来又找到了一种看起来很高大上的方法——Dinic算法。
这个方法要说一说,因为我也花了不少时间来理解,虽然还没有完全理解,但是已经被它所包含的思想震撼了。
这个算法是一层一层搜索的。简单来说,就是:
1)将这个图中用bfs遍历一遍,严格确立每个点的层次。
如果使用bfs可以从源点走到汇点,那么执行2),否则这张图中不存在新的增广路,算法结束。
2)从源点开始dfs,寻找到当前图中所有从源点到汇点的路径,在寻找时,严格按照点的层次寻找,只能从第i层的点走到第i+1层的点。
3)重复1)。
好神奇的方法。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std; const int N = ;
const int M = ; int mp[N][N];
int dis[N];
int cur[N];
bool vis[N];
int n, m;
int ans; void init()
{
memset(mp, , sizeof(mp));
for(int i = ; i < n; i++)
{
int a, b, c;
scanf("%d%d%d", &a, &b, &c);
mp[a][b] += c;
}
ans = ;
} bool bfs()
{
memset(vis, , sizeof(vis));
queue<int> que;
que.push();
dis[] = ;
vis[] = ;
while(!que.empty())
{
int k = que.front();
que.pop();
for(int i = ; i <= m; i++)
{
if(!vis[i] && mp[k][i] > )
{
vis[i] = ;
dis[i] = dis[k]+;
que.push(i);
}
}
}
return vis[m];
} int dfs(int x, int val)
{
if(x == m) return val;
int flow = , minn;
for(int& i = cur[x]; i <= m; i++) //随着i的变化改变cur[x],这样可以节省当前图中下次使用x时耗费的时间
{
int mval = val < mp[x][i] ? val : mp[x][i]; //记录当前路径中的最小的边的权,最后要根据它建立反向边
if(dis[x]+ == dis[i])
{
minn = ;
if(mval > ) minn = dfs(i, mval);
if(minn > )
{
mp[x][i] -= minn;
mp[i][x] += minn;
flow += minn;
val -= minn;
if(val == ) break;
}
} }
return flow;
} void work()
{
while(bfs()) //如果存在增广路,则dfs寻找,否则结束
{
for(int i = ; i <= m; i++) cur[i] = ;
ans += dfs(, M);
}
} void outit()
{
printf("%d\n", ans);
} int main()
{
//freopen("test.in", "r", stdin);
while(~scanf("%d%d", &n, &m))
{
init();
work();
outit();
}
return ;
}
Dinic