Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 18543 Accepted Submission(s): 11246
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10
1 3 6 9 0 8 5 7 4 2
1 3 6 9 0 8 5 7 4 2
Sample Output
16
Author
CHEN, Gaoli
Source
Recommend
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394
题意:求出对(ai,aj)(i<j,ai>aj)的全部数量。即求ai右边比ai小的数的个数和。每次变换a的序列,求出最小的逆序对数量和。
题意:求出对(ai,aj)(i<j,ai>aj)的全部数量。即求ai右边比ai小的数的个数和。每次变换a的序列,求出最小的逆序对数量和。
思路: 因为树状数组的最基本功能就是求比某点 x 小的点的个数。所以逆向存储ai。
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int MAXN=1e6+,INF=1e9+;
int a[MAXN],c[MAXN],ans[MAXN];
int lowbit(int x)
{
return x&(-x);
}
void add(int i,int val)
{
for(i; i<=MAXN; i+=lowbit(i))
c[i]+=val;
}
int sum(int i)
{
int s=;
for(i; i>; i-=lowbit(i))
s+=c[i];
return s;
}
int main()
{
int i,j,t,n;
while(scanf("%d",&n)!=EOF)
{
for(i=n; i>=; i--)
scanf("%d",&a[i]);
memset(c,,sizeof(c));
memset(ans,,sizeof(ans));
int cou=;
for(i=; i<=n; i++)
{
ans[i]=sum(a[i]+);
cou+=ans[i];
add(a[i]+,);
}
int Min=cou;
for(i=n; i>; i--)
{
for(j=; j<=n; j++)
{
if(j==i) continue;
if(a[i]<a[j])
{
cou++;
ans[j]++;
}
}
cou-=ans[i];
ans[i]=;
if(cou<Min) Min=cou;
}
cout<<Min<<endl;
}
return ;
}
逆序对