Problem Description
Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).
Input
The first line contains the integer T indicating to the number of test cases.
For each test case, the first line contains the integers n and B.
Following n lines provide the information of each item.
The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.
1 <= number of test cases <= 100
1 <= n <= 500
1 <= B, w[i] <= 1000000000
1 <= v[1]+v[2]+...+v[n] <= 5000
All the inputs are integers.
Output
For each test case, output the maximum value.
Sample Input
Sample Output
Source
第六届福建省大学生程序设计竞赛-重现赛(感谢承办方华侨大学)
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <stack>
#include <map>
#include <vector>
#include <queue>
using namespace std;
typedef long long LL;
#define N 2600000
#define met(a, b) memset(a, b, sizeof(a))
#define INF 0x3f3f3f3f int v[], w[];
int dp[N]; int main()
{
int T;
scanf("%d", &T);
while(T--)
{
int i, j, n, B, Max=, Index; scanf("%d%d", &n, &B); for(i=; i<=n; i++)
{
scanf("%d%d", &w[i], &v[i]);
Max += v[i];
} for(i=; i<=Max; i++)
dp[i] = INF;
dp[] = ;
for(i=; i<=n; i++)
for(j=Max; j>=v[i]; j--)
{
dp[j] = min(dp[j], dp[j-v[i]]+w[i]);
} for(i=; i<=Max; i++)
if(dp[i]<=B) Index = i; printf("%d\n", Index); }
return ;
}