一,预备知识:
- 信息量:
- 单个类别的信息熵:
- 条件信息量:
- 单个类别的条件熵:
- 信息增益:
- 信息熵:
- 条件熵:
(
表示分类的类,
表示属性V的取值,m为属性V的取值个数,n为分类的个数)
二.算法流程:
实质:递归的先根建树,结束条件(当前子集类别一致),建树量化方法(信息增益)
三.示例代码:
package com.mechinelearn.id3; import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.regex.Matcher;
import java.util.regex.Pattern; import org.dom4j.Document;
import org.dom4j.DocumentHelper;
import org.dom4j.Element;
import org.dom4j.io.OutputFormat;
import org.dom4j.io.XMLWriter; public class ID3 {
private ArrayList<String> attribute = new ArrayList<String>(); // 存储属性的名称
private ArrayList<ArrayList<String>> attributevalue = new ArrayList<ArrayList<String>>(); // 存储每个属性的取值
private ArrayList<String[]> data = new ArrayList<String[]>();; // 原始数据
int decatt; // 决策变量在属性集中的索引
public static final String patternString = "@attribute(.*)[{](.*?)[}]"; Document xmldoc;
Element root; public ID3() {
xmldoc = DocumentHelper.createDocument();
root = xmldoc.addElement("root");
root.addElement("DecisionTree").addAttribute("value", "null");
} public static void main(String[] args) {
ID3 inst = new ID3();
inst.readARFF(new File("data.txt"));
inst.setDec("play");
LinkedList<Integer> ll = new LinkedList<Integer>();
for (int i = 0; i < inst.attribute.size(); i++) {
if (i != inst.decatt)
ll.add(i);
}
ArrayList<Integer> al = new ArrayList<Integer>();
for (int i = 0; i < inst.data.size(); i++) {
al.add(i);
}
inst.buildDT("DecisionTree", "null", al, ll);
inst.writeXML("dt.xml");
return;
} // 读取arff文件,给attribute、attributevalue、data赋值
public void readARFF(File file) {
try {
FileReader fr = new FileReader(file);
BufferedReader br = new BufferedReader(fr);
String line;
Pattern pattern = Pattern.compile(patternString);
while ((line = br.readLine()) != null) {
Matcher matcher = pattern.matcher(line);
if (matcher.find()) {
attribute.add(matcher.group(1).trim());// 增加属性
String[] values = matcher.group(2).split(",");
ArrayList<String> al = new ArrayList<String>(values.length);
for (String value : values) {
al.add(value.trim());
}
attributevalue.add(al);// 每个属性对应的属性值
} else if (line.startsWith("@data")) {
while ((line = br.readLine()) != null) {
if (line == "")
continue;
String[] row = line.split(",");
data.add(row);// 增加训练数据
}
} else {
continue;
}
}
br.close();
} catch (IOException e1) {
e1.printStackTrace();
}
} // 设置决策变量
public void setDec(String name) {
int n = attribute.indexOf(name);
if (n < 0 || n >= attribute.size()) {
System.err.println("决策变量指定错误。");
System.exit(2);
}
decatt = n;
} // 计算每一个属性的属性值对应的的熵
public double getEntropy(int[] arr) {
double entropy = 0.0;
int sum = 0;
for (int i = 0; i < arr.length; i++) {
entropy -= arr[i] * Math.log(arr[i] + Double.MIN_VALUE)
/ Math.log(2);
sum += arr[i];
}
entropy += sum * Math.log(sum + Double.MIN_VALUE) / Math.log(2);
entropy /= sum;
return entropy;
} // 给一个样本数组及样本的算术和,计算它的熵
public double getEntropy(int[] arr, int sum) {
double entropy = 0.0;
for (int i = 0; i < arr.length; i++) {
entropy -= arr[i] * Math.log(arr[i] + Double.MIN_VALUE)
/ Math.log(2);
}
entropy += sum * Math.log(sum + Double.MIN_VALUE) / Math.log(2);
entropy /= sum;
return entropy;
} //是否到达叶子节点
public boolean infoPure(ArrayList<Integer> subset) {
String value = data.get(subset.get(0))[decatt];
for (int i = 1; i < subset.size(); i++) {
String next = data.get(subset.get(i))[decatt];
// equals表示对象内容相同,==表示两个对象指向的是同一片内存
if (!value.equals(next))
return false;
}
return true;
} // 给定原始数据的子集(subset中存储行号),当以第index个属性为节点时计算它的信息熵
public double calNodeEntropy(ArrayList<Integer> subset, int index) {
int sum = subset.size();
double entropy = 0.0;
int[][] info = new int[attributevalue.get(index).size()][];//属性值个数为行
for (int i = 0; i < info.length; i++)
info[i] = new int[attributevalue.get(decatt).size()];//分类属性值个数为列
int[] count = new int[attributevalue.get(index).size()];//每个属性值在整个样本中出现的概率
for (int i = 0; i < sum; i++) {
int n = subset.get(i);
String nodevalue = data.get(n)[index];
int nodeind = attributevalue.get(index).indexOf(nodevalue);
count[nodeind]++;
String decvalue = data.get(n)[decatt];
int decind = attributevalue.get(decatt).indexOf(decvalue);
info[nodeind][decind]++;
}
for (int i = 0; i < info.length; i++) {
entropy += getEntropy(info[i]) * count[i] / sum;// 计算条件熵
}
return entropy;
} // 构建决策树(递归建树)
public void buildDT(String name, String value, ArrayList<Integer> subset,
LinkedList<Integer> selatt) {
Element ele = null;
@SuppressWarnings("unchecked")
List<Element> list = root.selectNodes("//" + name);
Iterator<Element> iter = list.iterator();
while (iter.hasNext()) {
ele = iter.next();
if (ele.attributeValue("value").equals(value))
break;
}
if (infoPure(subset)) {// 深度优先建树是否结束
ele.setText(data.get(subset.get(0))[decatt]);// 设置决策
return;
}
int minIndex = -1;
double minEntropy = Double.MAX_VALUE;
for (int i = 0; i < selatt.size(); i++) {
if (i == decatt)
continue;
double entropy = calNodeEntropy(subset, selatt.get(i));
if (entropy < minEntropy) {
minIndex = selatt.get(i);
minEntropy = entropy;
}
}
String nodeName = attribute.get(minIndex);
selatt.remove(new Integer(minIndex));
ArrayList<String> attvalues = attributevalue.get(minIndex);
for (String val : attvalues) {
ele.addElement(nodeName).addAttribute("value", val);
ArrayList<Integer> al = new ArrayList<Integer>();
for (int i = 0; i < subset.size(); i++) {
if (data.get(subset.get(i))[minIndex].equals(val)) {
al.add(subset.get(i));
}
}
buildDT(nodeName, val, al, selatt);// 递归建树
}
} // 把xml写入文件
public void writeXML(String filename) {
try {
File file = new File(filename);
if (!file.exists())
file.createNewFile();
FileWriter fw = new FileWriter(file);
OutputFormat format = OutputFormat.createPrettyPrint(); // 美化格式
XMLWriter output = new XMLWriter(fw, format);
output.write(xmldoc);
output.close();
} catch (IOException e) {
System.out.println(e.getMessage());
}
}
}