题目:
题意:
一共n种不同的礼券,每次得到每种礼券的概率相同。求期望多少次可以得到所有n种礼券。结果以带分数形式输出。1<= n <=33.
思路:
假设当前已经得到k种,获得新的一种的概率是(n-k)/n,则对应期望是n/(n-k)。求和得到步数期望是n/n+n/(n-1)+...+n/1=n*sum(1/i) (1<= i <= n)。需要注意及时约分,用分数类模板。
程序:
#include <cstdio>
#include <cassert>
#include <cstdlib> long long gcd (long long a, long long b) {
return b == ? a : gcd(b, a % b);
} class fraction {
public:
fraction() {
numerator = ;
denominator = ;
}
fraction(long long num) {
numerator = num;
denominator = ;
}
fraction (long long a, long long b) {
assert(b != );
if (b < ) {
numerator = -a;
denominator = -b;
} else {
numerator = a;
denominator = b;
}
this->reduction();
} void operator = (long long num) {
numerator = num;
denominator = ;
} void operator = (const fraction &b) {
numerator = b.numerator;
denominator = b.denominator;
this->reduction();
} fraction operator + (const fraction &b) const {
long long gcdnum = gcd(denominator, b.denominator);
return fraction(numerator*(b.denominator/gcdnum) + b.numerator*(denominator/gcdnum), denominator/gcdnum*b.denominator);
} fraction operator + (const int b) const {
return ((*this) + fraction(b));
} fraction operator - (const fraction &b) const {
return ((*this) + fraction(-b.numerator, b.denominator));
} fraction operator - (const int &b) const {
return ((*this) - fraction(b));
} fraction operator * (const fraction &b) const {
return fraction(numerator*b.numerator, denominator * b.denominator);
} fraction operator * (const int &b) const {
return ((*this) * fraction(b));
} fraction operator / (const fraction &b) const {
return ((*this) * fraction(b.denominator, b.numerator));
} void reduction() {
if (numerator == ) {
denominator = ;
return;
}
long long gcdnum = gcd(abs(numerator), denominator);
numerator /= gcdnum;
denominator /= gcdnum;
} public:
long long numerator;//分子
long long denominator;//分母
}; int countLen (long long n) {
int m = ;
while (n) {
n /= ;
m++;
}
return m;
} void printF (const fraction &f){
long long a, b, c;
int m, n;
b = f.numerator;
c = f.denominator;
if (c == (long long)) {
printf("%lld\n", b);
} else {
a = b / c;
m = countLen(a);
b -= a * c;
n = countLen(c);
for (int i = ; i <= m; i++) {
printf(" ");
}
printf("%lld\n%lld ", b, a);
for (int i = ; i < n; i++) {
printf("-");
}
puts("");
for (int i = ; i <= m; i++) {
printf(" ");
}
printf("%lld\n", c);
}
} int main() {
int n, maxn = ;
fraction f[maxn + ]; for (int i = ; i <= maxn; i++) {
f[i] = f[i - ] + fraction(, i);
} while (~scanf("%d", &n)) {
printF(f[n] * n);
} return ;
}