[PKUSC2018]星际穿越(倍增)

时间:2023-03-09 09:44:58
[PKUSC2018]星际穿越(倍增)

题意:n个点的图,点i和[l[i],i)的所有点连双向边。每次询问(l,r,x)表示x到[l,r]的所有点的最短路径长度和。

首先这题显然可以线段树优化建图,但是需要比较好的常数才能通过45分,还需要发掘性质。

先不考虑往右走的情况,对于一个点x,每个点i与x的最短距离一定形成一个个连续区间,即:设f[i][j]表示i走j步能到的最左的点,则$f[i][j+1]=\min\limits_{k=f[i][j]}^{i-1}l[k]$。所以只要往前扫一遍就能求出f[i]数组。

接着考虑往右走的情况,可以证明,一个点最多只需要往右走一次,所以只需要往后扫一遍就能求出新的f[i]数组。这样我们记录一个前缀和就可以在$O(n^2)$复杂度内解决问题。

可以发现f[i][j]这个数组显然是可以倍增优化的,直接套上RMQ类似的模板即可。

这里有一个简化代码的方法,就是f[i][j]改为表示[i..n]的所有点走$2^j$步之后能到达的最靠前的点,这样就可以直接倍增转移了。但是这样就要判断i最后是否需要先往右走一步,这里又有一个小技巧:先强制往左走一步,剩下的直接处理即可。

总码长不到1k。

 #include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
typedef long long ll;
using namespace std; const int N=;
int n,Q,l,r,x,L[N],to[][N];
ll sm[][N]; int gcd(int a,int b){ return b ? gcd(b,a%b) : a; } ll calc(int l,int r){
if (L[r]<=l) return r-l;
ll ans=r-L[r]; r=L[r]; int tot=;
for (int i=; ~i; i--)
if (to[i][r]>l) ans+=sm[i][r]+tot*(r-to[i][r]),r=to[i][r],tot+=<<i;
return ans+(r-l)*(tot+);
} int main(){
freopen("pkua.in","r",stdin);
freopen("pkua.out","w",stdout);
scanf("%d",&n); L[]=;
rep(i,,n) scanf("%d",&L[i]);
to[][n]=L[n]; sm[][n]=n-L[n];
for (int i=n-; i; i--) to[][i]=min(to[][i+],L[i]),sm[][i]=i-to[][i];
rep(i,,) rep(j,,n) if (to[i-][j]){
to[i][j]=to[i-][to[i-][j]];
sm[i][j]=sm[i-][j]+sm[i-][to[i-][j]]+(to[i-][j]-to[i][j])*(1ll<<(i-));
}
for (scanf("%d",&Q); Q--; ){
scanf("%d%d%d",&l,&r,&x);
ll a=calc(l,x)-calc(r+,x),b=r-l+; int d=gcd(a%b,b);
printf("%lld/%lld\n",a/d,b/d);
}
return ;
}