[noip模拟]数字对

时间:2023-03-09 09:36:04
[noip模拟]数字对<RMQ&二分>

数字对

【题目描述】

小H是个善于思考的学生,现在她又在思考一个有关序列的问题。

她的面前浮现出一个长度为n的序列{ai},她想找出一段区间[L, R](1 <= L <= R <= n)。

这个特殊区间满足,存在一个k(L <= k <= R),并且对于任意的i(L <= i <= R),ai都能被ak整除。这样的一个特殊区间 [L, R]价值为R - L。

小H想知道序列中所有特殊区间的最大价值是多少,而有多少个这样的区间呢?这些区间又分别是哪些呢?你能帮助她吧。

【输入格式】

第一行,一个整数n.

第二行,n个整数,代表ai.

【输出格式】

第一行两个整数,num和val,表示价值最大的特殊区间的个数以及最大价值。

第二行num个整数,按升序输出每个价值最大的特殊区间的L.

【样例输入1】

5

4 6 9 3 6

【样例输出1】

1 3

2

【样例输入2】

5

2 3 5 7 11

【样例输出2】

5 0

1 2 3 4 5

【数据范围】

30%: 1 <= n <= 30 , 1 <= ai <= 32.

60%: 1 <= n <= 3000 , 1 <= ai <= 1024.

80%: 1 <= n <= 300000 , 1 <= ai <= 1048576.

100%: 1 <= n <= 500000 , 1 <= ai < 2 ^ 31.

【思路】

题不是很难,就是可能一些细节注意不到或者优化想不到

我拿到题后的第一反应是一个数组f[i][j][k]表示从i开始的j位来记录这个区间的最小值和最大公约数

随便举一些例子就不难发现,其实要满足条件的区间,整除的那个数是这个区间最小而且是最大公约数

那么题就简单了,就是求最小值和最大公约数相同的区间,然后找到区间最大的并输出左端点

我们之前定义了一个f[i][j][k],然后结合一起的知识,我们不难有一个大胆的想法[noip模拟]数字对<RMQ&二分>

就是用RMQ来处理这个小小细节,表示为gcdn[i][j]是从i位开始的2^j位这个区间的最大公约数

                   minn[i][j]是从i为开始的2^j位这个区间的最小值

这里一想出来,接下来就是区间的最大长度了。。。这个简单,枚举一下这个长度然后找gcd和min相同的区间

当然,枚举,不存在的,直接二分就行了。。。。另外一提,这题非常容易超时

所以我来提几个细节

1.在RMQ时的外循环,不能循环到int类型的边界,而是要根据n来定义,循环到log₂n次(注意不要搞成根号n了),j是代表2^j次方

2.在表示2^j次方不要直接用函数pow,要用位运算,位运算的时间消耗更小。。。

只有这样才不会超时

 #include<cstdio>
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<queue>
#define maxn 500005
using namespace std;
int gcdn[maxn][],minn[maxn][],n,m,a[maxn];
int gcd(int a,int b){
if(b==)return a;
else return gcd(b,a%b);
}
void rmq(){
for(int j=;j<=(int)log2(n);j++){
for(int i=;i<=n;i++){
int new_=pow(2.0,j)+i-;
if(new_>n)continue;
minn[i][j]=min(minn[i][j-],minn[i+ (<<(j-))][j-]);
gcdn[i][j]=gcd(gcdn[i][j-],gcdn[i+ (<<(j-))][j-]);
}
}
}
int ans[maxn],num,val,len;
void change(int l,int r,int n){
if(l==r)return;
int mid=(l+r)>>;
int j=log2(mid+);
for(int i=;i<=n-mid;i++){
int a1,a2;
a1=min(minn[i][j],minn[i+mid- (<<j) + ][j]);
a2=gcd(gcdn[i][j],gcdn[i+mid- (<<j) + ][j]);
if(a1==a2){
num++;ans[num]=i;
}
}
if(num==)change(l,mid,n);
else{
val=mid;len=num;
num=;change(mid+,r,n);
}
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
gcdn[i][]=minn[i][]=a[i];
}
rmq();
change(,n-,n);
printf("%d %d\n",len,val);
for(int i=;i<=len;i++){
printf("%d ",ans[i]);
}
}

总结:

1.对于区间的最值一类问题,可以用RMQ解决

2.pow函数的使用要注意pow出来的值是浮点数,而且pow函数里的第一个数必须是浮点数,比如要求2^j,就是pow( 2.0, j ),当然这个细节是因为cena里会编译错误,自己是不会报错的

3.能用位运算就尽量用位运算,特别是循环中会多次执行一个语句,换成位运算后可以大大省下时间

4.注意区分一下log2和sqrt,两个出来的值不同,比如log2(64)=6,sqrt(64)=8,初中数学,相信就不用解释了