1001: [BeiJing2006]狼抓兔子
Description
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,
而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:
左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路
1:(x,y)<==>(x+1,y)
2:(x,y)<==>(x,y+1)
3:(x,y)<==>(x+1,y+1)
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,
开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击
这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,
才能完全*这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的
狼的数量要最小。因为狼还要去找喜羊羊麻烦.
Input
第一行为N,M.表示网格的大小,N,M均小于等于1000.
接下来分三部分
第一部分共N行,每行M-1个数,表示横向道路的权值.
第二部分共N-1行,每行M个数,表示纵向道路的权值.
第三部分共N-1行,每行M-1个数,表示斜向道路的权值.
输入文件保证不超过10M
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
14
-----------------------------------------我是傲娇的分割线---------------------------------------------
显然是个最大流问题。
边数达到了10^6级别,显然用dinic算法会TLE
对于一个平面图来说,当然用对偶图的最短路来求最小割(最大流)
SPFA转移的时候注意判断边界情况
应该要开longlong才能过
上代码:
/**************************************************************
Problem: 1001
User: xialan
Language: C++
Result: Accepted
Time:5648 ms
Memory:56480 kb
****************************************************************/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<climits>
#include<cmath>
#include<algorithm>
#include<queue>
using namespace std;
#define rep(i,a,b) for(int i=a;i<=b;i++)
#define dep(i,a,b) for(int i=a;i>=b;i--)
typedef long long LL;
inline LL read(){
LL x=;char ch=getchar();
while(ch<''||ch>'')ch=getchar();
while(ch>=''&&ch<=''){
x=x*+ch-'';
ch=getchar();
}
return x;
}
struct edge{
int x,y;bool f;
};
queue<edge>q;
const int M=;
const LL MM=(LL)1e15;
LL dis[M][M][],hang[M][M],lie[M][M],xie[M][M],vis[M][M][];
int main(){
int n,m;
scanf("%d%d",&n,&m);
rep(i,,n)rep(j,,m-)hang[i][j]=read();
rep(i,,n-)rep(j,,m)lie[i][j]=read();
rep(i,,n-)rep(j,,m-)xie[i][j]=read();
rep(i,,n-)rep(j,,m-)dis[i][j][]=dis[i][j][]=MM;
memset(vis,,sizeof(vis));
rep(i,,m-){
dis[][i][]=hang[][i];
vis[][i][]=;
q.push((edge){,i,});
}
dis[][m-][]=min(hang[][m-],lie[][m]);
q.push((edge){,m-,});
vis[][m-][]=;
rep(i,,n-){
dis[i][m-][]=lie[i][m];
vis[i][m-][]=;
q.push((edge){i,m-,});
} while(!q.empty()){
edge u=q.front();q.pop();vis[u.x][u.y][u.f]=;
if(u.f){
if(u.x>){
if(dis[u.x-][u.y][]>dis[u.x][u.y][]+hang[u.x][u.y]){
dis[u.x-][u.y][]=dis[u.x][u.y][]+hang[u.x][u.y];
if(!vis[u.x-][u.y][]){
vis[u.x-][u.y][]=;
q.push((edge){u.x-,u.y,});
}
}
}
if(u.y<m-){
if(dis[u.x][u.y+][]>dis[u.x][u.y][]+lie[u.x][u.y+]){
dis[u.x][u.y+][]=dis[u.x][u.y][]+lie[u.x][u.y+];
if(!vis[u.x][u.y+][]){
vis[u.x][u.y+][]=;
q.push((edge){u.x,u.y+,});
}
}
}
if(dis[u.x][u.y][]>dis[u.x][u.y][]+xie[u.x][u.y]){
dis[u.x][u.y][]=dis[u.x][u.y][]+xie[u.x][u.y];
if(!vis[u.x][u.y][]){
vis[u.x][u.y][]=;
q.push((edge){u.x,u.y,});
}
}
}
else{
if(u.x<n-){
if(dis[u.x+][u.y][]>dis[u.x][u.y][]+hang[u.x+][u.y]){
dis[u.x+][u.y][]=dis[u.x][u.y][]+hang[u.x+][u.y];
if(!vis[u.x+][u.y][]){
vis[u.x+][u.y][]=;
q.push((edge){u.x+,u.y,});
}
}
}
if(u.y>){
if(dis[u.x][u.y-][]>dis[u.x][u.y][]+lie[u.x][u.y]){
dis[u.x][u.y-][]=dis[u.x][u.y][]+lie[u.x][u.y];
if(!vis[u.x][u.y-][]){
vis[u.x][u.y-][]=;
q.push((edge){u.x,u.y-,});
}
}
}
if(dis[u.x][u.y][]>dis[u.x][u.y][]+xie[u.x][u.y]){
dis[u.x][u.y][]=dis[u.x][u.y][]+xie[u.x][u.y];
if(!vis[u.x][u.y][]){
vis[u.x][u.y][]=;
q.push((edge){u.x,u.y,});
}
}
}
}
LL MIN=INT_MAX;
rep(i,,n-)MIN=min(MIN,dis[i][][]+lie[i][]);
rep(i,,m-)MIN=min(MIN,dis[n-][i][]+hang[n][i]);
printf("%lld\n",MIN);
return ;
}