4553: [Tjoi2016&Heoi2016]序列
Time Limit: 20 Sec Memory Limit: 128 MB
Description
佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他。玩具上有一个数列,数列中某些项的值
可能会变化,但同一个时刻最多只有一个值发生变化。现在佳媛姐姐已经研究出了所有变化的可能性,她想请教你
,能否选出一个子序列,使得在任意一种变化中,这个子序列都是不降的?请你告诉她这个子序列的最长长度即可
。注意:每种变化最多只有一个值发生变化。在样例输入1中,所有的变化是:
1 2 3
2 2 3
1 3 3
1 1 31 2 4
选择子序列为原序列,即在任意一种变化中均为不降子序列在样例输入2中,所有的变化是:3 3 33 2 3选择子序列
为第一个元素和第三个元素,或者第二个元素和第三个元素,均可满足要求
Input
输入的第一行有两个正整数n, m,分别表示序列的长度和变化的个数。接下来一行有n个数,表示这个数列原始的
状态。接下来m行,每行有2个数x, y,表示数列的第x项可以变化成y这个值。1 <= x <= n。所有数字均为正整数
,且小于等于100,000
Output
输出一个整数,表示对应的答案
Sample Input
3 4
1 2 3
1 2
2 3
2 1
3 4
1 2 3
1 2
2 3
2 1
3 4
Sample Output
3
题解:
我们来分析一下这道题让我们干什么:
我们知道了一个序列,其中每一个元素都可能变化,
我们设他的原始值为a[i],最大值为maxv[i],最小值为minv[i],
再设f[i]为以i为结尾的最长符合要求子序列,显然这可以用一个dp来解决:对于f[i],有
f[i]=max{f[j]}+1
而对j的要求,由于同时只有一个元素发生变化,我们就要求满足
j<i&&maxv[j]<=a[i]&&a[j]<=minv[i]
我们发现,这好像长得“很像”一个三维偏序问题。
如果我们用树套树来解决的话,也不是不可以(详见勇士的战斗记录:BZOJ4553: [Tjoi2016&Heoi2016]序列 树套树优化DP)
但是为什么我们不用更简单的做法来解决呢?
显然,这个东西是可以用cdq分治来解决的
我们对于区间[l,r],如果这个元素i在mi前面,我们就用(maxv[i],a[i])作为他的权值;否则,就用(a[i],minv[i])来作为他的权值。
这样,就可以实现上面的想法了:用前面来更新后面。这也是本题的关键。
想到了这一点,代码实现就很简单了。代码见下:
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <algorithm>
using namespace std;
const int N=;
int n,m,bit[N+],f[N+];
struct num{int val,maxv,minv;}x[N+];
struct cdq{int x,y,id;}a[N+];
inline int lowbit(int a){return a&(-a);}
inline bool mt(const cdq &a,const cdq &b)
{return (a.x==b.x)?a.id<b.id:a.x<b.x;}
inline void add(int i,int val)
{
while(i<=N)
{
bit[i]=(val==)?:max(bit[i],val);
i+=lowbit(i);
}
}
inline int sum(int i)
{
int ret=;
while(i)
ret=max(ret,bit[i]),i-=lowbit(i);
return ret;
}
void cdq(int l,int r)
{
if(l==r){f[l]=max(f[l],);return;}
int mi=(l+r)>>;
cdq(l,mi);
for(int i=l;i<=r;i++)
{
if(i<=mi)a[i].x=x[i].val,a[i].y=x[i].maxv;
else a[i].x=x[i].minv,a[i].y=x[i].val;
a[i].id=i;
}
sort(a+l,a+r+,mt);
for(int i=l;i<=r;i++)
{
if(a[i].id<=mi)add(a[i].y,f[a[i].id]);
else f[a[i].id]=max(sum(a[i].y)+,f[a[i].id]);
}
for(int i=l;i<=r;i++)add(a[i].y,);
cdq(mi+,r);
}
int main()
{
scanf("%d%d",&n,&m);int u,v,ans=;
for(int i=;i<=n;i++)
scanf("%d",&x[i].val),x[i].minv=x[i].maxv=x[i].val;
while(m--)
{
scanf("%d%d",&u,&v);
x[u].maxv=max(x[u].maxv,v);
x[u].minv=min(x[u].minv,v);
}
cdq(,n);
for(int i=;i<=n;i++)ans=max(ans,f[i]);
printf("%d\n",ans);
}