Luogu4494 [HAOI2018]反色游戏 【割顶】

时间:2023-03-09 08:31:21
Luogu4494 [HAOI2018]反色游戏 【割顶】

首先发现对于一个联通块有奇数个黑点,那么总体来说答案无解。这个很容易想,因为对每个边进行操作会同时改变两个点的颜色,异或值不变。

然后一个朴素的想法是写出异或方程进行高斯消元。

可以发现高斯消元的过程实际上就是合并两个点的过程,如果是一棵树的话那么答案一定是2。

对于树上每多的一条边,它在合并点的过程中会被消除掉,这意味着这个是一个*元。所以我们发现连通图的答案是$2^{m-n+1}$。

这样第一问答案就可以求了。判完无解后答案为$2^{m-n+d}$,$d$为联通块数。

对于第二问,如果有超过两个联通块的黑点为奇数个,后面全部为0。

现在考虑删除一个点,没有改变连通性,那么只有两种情况,一种是其它联通块仍然有奇数个黑点,答案为0,否则看自己这个联通块整体的黑点个数异或上当前删除的点的颜色,为奇数则答案为0,否则答案不难想。

如果删除了一个点,改变了连通性,那么分别检查每个联通块的奇偶性,这个不难,答案也不难想。

代码:

 #include<bits/stdc++.h>
using namespace std; const int maxn = ;
const int mod = 1e9+; int n,m,cnt;
vector<int> g[maxn];
int a[maxn],flag; int low[maxn],dfn[maxn],sz[maxn],cl,pa[maxn];
int ans[maxn],pw2[maxn*]; void init(){
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(sz,,sizeof(sz));
memset(pa,,sizeof(pa));
memset(ans,,sizeof(ans));
memset(pw2,,sizeof(pw2));
memset(a,,sizeof(a));
for(int i=;i<=n;i++) g[i].clear();
n = m = cnt = flag = ;
} void dfs(int now,int fa){
low[now] = dfn[now] = ++cl;
pa[now] = fa; sz[now] = a[now];
for(int i=;i<g[now].size();i++){
int z = g[now][i];
if(z == fa || dfn[z] > dfn[now]) continue;
if(dfn[z] == ){
dfs(z,now); sz[now]^=sz[z];
low[now] = min(low[now],low[z]);
}else low[now] = min(low[now],dfn[z]); }
} void dfs2(int now,int fa,int dr){
for(int i=;i<g[now].size();i++){
if(pa[g[now][i]] != now) continue;
dfs2(g[now][i],now,dr);
}
int isfuck = ;
if(flag - dr) {ans[now] = ;return;}
if(fa == ){
int mlgb = ;
for(int i=;i<g[now].size();i++){
if(pa[g[now][i]] != now) continue;
mlgb++; isfuck += sz[g[now][i]];
}
if(mlgb == ){ans[now] = ans[];}
else if(mlgb == ){
if(isfuck) ans[now] = ;
else ans[now] = pw2[m-g[now].size()-(n-)+cnt];
}else{
if(isfuck) ans[now] = ;
else ans[now] = pw2[m-g[now].size()-(n-)+(cnt-+mlgb)];
}
}else{
int mlgb = ;
for(int i=;i<g[now].size();i++){
if(pa[g[now][i]] != now) continue;
if(low[g[now][i]] >= dfn[now]){
mlgb++;
isfuck += sz[g[now][i]];
}
}
if(mlgb == ){
if(dr ^ a[now]) ans[now] = ;
else ans[now] = pw2[m-g[now].size()-(n-)+cnt];
}else{
if(isfuck) ans[now] = ;
else if(dr^(isfuck&)^a[now]) ans[now] = ;
else ans[now] = pw2[m-g[now].size()-(n-)+(cnt+mlgb)];
}
}
} void read(){
scanf("%d%d",&n,&m);
for(int i=;i<=m;i++){
int u,v; scanf("%d%d",&u,&v);
g[u].push_back(v); g[v].push_back(u);
}
for(int i=;i<=n;i++) scanf("%1d",&a[i]);
} void work(){
pw2[] = ;
for(int i=;i<=m*;i++) pw2[i] = pw2[i-]*%mod;
for(int i=;i<=n;i++) {
if(!dfn[i]) {
dfs(i,); cnt++;
if(sz[i]) flag++;
}
}
if(flag == ){ans[] = pw2[m-n+cnt];}
if(flag >= ){
for(int i=;i<=n;i++) printf("0 ");
puts("");
return;
}
for(int i=;i<=n;i++) {
if(pa[i] == ){dfs2(i,,sz[i]);}
}
for(int i=;i<=n;i++) printf("%d ",ans[i]);
puts("");
} int main(){
int T; scanf("%d",&T);
while(T--){
init();
read();
work();
}
return ;
}