Zhang_RQ题解(本篇仅概述)
前言
有进步,只做了半天。。。。
一道具有极强综合性的数数好题!
强大的多合一题目
精确地数学推导和耐心。
有套路又不失心意。
融合了:
算法:
prufer序列及其扩展
树形Dp
容斥或者二项式定理
EGF
多项式Exp
先要会:
省选模拟赛第四轮 B——O(n^4)->O(n^3)->O(n^2)
然后开始刚题。
就是:
求各种情况下的y^(n-|T1∩T2|)的和
OP=0
哈希。
OP=1
枚举交集,统计符合的T2树的个数
prufer序列森林版扩展
但是会算重,连回去会多
考虑重组贡献
每个实际的$y^k$会被$k$小的时候计算,$y^k=(y+1-1)^k=∑C(j,i)(y-1)^i$
发现,只要把贡献的$y$成$y-1$,就大功告成啦!
$\Pi szi$可以套路地组合意义成为每个连通块选择一个的方案数,然后就$f[i][0/1]$就O(n)辣
注意每次选择交的边还有贡献
这里,第二个$y^{-1}$运算的时候,要变成$(y^{-1}-1)$
OP=2
还是枚举交集的边
发现和交集大小密切相关,所以枚举交集大小$s$
然后$gs$设出来,
要枚举边再考虑连通块,不妨枚举连通块考虑贡献的边集
连通块的分配$\frac{n!}{(n-s)!}$,连通块内的连边$a^{a-2}$,连通块之间连边$\Pi a_i *n^{m-2}$
一些东西要平方
把$gs$带回去,然后无关的都提到前面去
把枚举连通块,变成EGF
然后再变成多项式指数函数的形式,大功告成!
#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;
while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);
(fl==true)&&(x=-x);
}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} namespace Miracle{
const int N=1e5+;
const int mod=;
const int G=;
const int GI=;
int n,Y;
int mul(int x,int y){return (ll)x*y%mod;}
int ad(int x,int y){return x+y>=mod?x+y-mod:x+y;}
il int sub(int x,int y){return ad(x,mod-y);}
int qm(int x,int y){
int ret=;
while(y){
if(y&) ret=mul(ret,x);
x=mul(x,x);
y>>=;
}
return ret;
}
namespace sol0{
map<pair<int,int>,int>mp;
int cnt;
void main(){
int x,y;
for(reg i=;i<n;++i){
rd(x);rd(y);if(x>y) swap(x,y);mp[mk(x,y)]=;
}
for(reg i=;i<n;++i){
rd(x);rd(y);if(x>y) swap(x,y);cnt+=mp[mk(x,y)];
}
printf("%d\n",qm(Y,n-cnt));
} }
namespace sol1{
ll f[N][];
int z;
int cos,ivc;
struct node{
int nxt,to;
}e[*N];
int hd[N],cnt;
void add(int x,int y){
e[++cnt].nxt=hd[x];
e[cnt].to=y;
hd[x]=cnt;
}
void dfs(int x,int fa){
f[x][]=f[x][]=;
for(reg i=hd[x];i;i=e[i].nxt){
int y=e[i].to;
if(y==fa) continue;
dfs(y,x);
//jiao and no
ll od0=f[x][],od1=f[x][];
f[x][]=ad(mul(od0,f[y][]),mul(od0,mul(f[y][],cos)));
f[x][]=ad(mul(od1,f[y][]),ad(mul(od0,mul(f[y][],cos)),mul(od1,mul(f[y][],cos))));
}
}
void main(){
int x,y;
for(reg i=;i<n;++i){
rd(x);rd(y);add(x,y);add(y,x);
}
if(Y==){
printf("%d\n",qm(n,n-));
return;
}
z=ad(qm(Y,mod-),mod-);
cos=mul(z,qm(n,mod-));
ivc=qm(cos,mod-);
// cout<<" cos "<<cos<<" ivc "<<ivc<<endl;
dfs(,);
ll ans=;
ans=mul(mul(qm(n,n-),qm(Y,n)),f[][]);
cout<<ans;
}
}
namespace sol2{
struct Poly{
vector<int>f;
Poly(){f.clear();}
il int &operator[](const int &x){return f[x];}
il const int &operator[](const int &x) const {return f[x];}
il void resize(const int &n){f.resize(n);}
il int size() const {return f.size();}
il void cpy(Poly &b){f.resize(b.size());for(reg i=;i<(int)f.size();++i)f[i]=b[i];}
il void rev(){reverse(f.begin(),f.end());}
il void clear(){f.clear();}
il void read(const int &n){f.resize(n);for(reg i=;i<n;++i)rd(f[i]);}
il void out() const {for(reg i=;i<(int)f.size();++i)ot(f[i]);putchar('\n');}
}R;
il int init(const int &n){int m;for(m=;m<n;m<<=);return m;}
il void rev(Poly &f){
int lp=f.size();
if(R.size()!=f.size()) {
R.resize(f.size());
for(reg i=;i<lp;++i){
R[i]=(R[i>>]>>)|((i&)?lp>>:);
}
}
for(reg i=;i<lp;++i){
if(i<R[i]) swap(f[i],f[R[i]]);
}
}
il void NTT(Poly &f,int c){
int n=f.size();rev(f);
for(reg p=;p<=n;p<<=){
int gen=(c==)?qm(G,(mod-)/p):qm(GI,(mod-)/p);
for(reg l=;l<n;l+=p){
int buf=;
for(reg k=l;k<l+p/;++k){
int tmp=mul(f[k+p/],buf);
f[k+p/]=sub(f[k],tmp);
f[k]=ad(f[k],tmp);
buf=mul(buf,gen);
}
}
}
if(c==-){
int iv=qm(n,mod-);for(reg i=;i<n;++i) f[i]=mul(f[i],iv);
}
}
il Poly Inv(const Poly &f,int n){
if(n==){
Poly g;g.resize();g[]=qm(f[],mod-);return g;
}
Poly g=Inv(f,(n+)>>),t;
int m=init(n*);
t.resize(m);
for(reg i=;i<n;++i)t[i]=f[i];
g.resize(m);
NTT(g,);NTT(t,);
for(reg i=;i<m;++i)g[i]=mul(sub(,mul(g[i],t[i])),g[i]);
NTT(g,-);g.resize(n);
return g;
}
il void operator *=(Poly &f,Poly g){
int st=f.size()+g.size()-;
int len=init(f.size()+g.size()-);f.resize(len);g.resize(len);
NTT(f,);NTT(g,);for(reg i=;i<len;++i) f[i]=mul(f[i],g[i]);
NTT(f,-);
f.resize(st);
}
il void operator *=(Poly &f,const int &c){for(reg i=;i<f.size();++i) f[i]=mul(f[i],c);}
il Poly operator *(Poly f,const Poly &g){f*=g;return f;}
il Poly operator *(Poly f,const int &c){for(reg i=;i<f.size();++i) f[i]=mul(f[i],c);return f;}
il void operator +=(Poly &f,const Poly &g){for(reg i=;i<f.size();++i) f[i]=ad(f[i],g[i]);}
il void operator +=(Poly &f,const int &c){f[]=ad(f[],c);}
il Poly operator +(Poly f,const Poly &g){for(reg i=;i<f.size();++i) f[i]=ad(f[i],g[i]);return f;}
il Poly operator +(Poly f,const int &c){f[]=ad(f[],c);return f;}
il void operator -=(Poly &f,const Poly &g){for(reg i=;i<f.size();++i) f[i]=sub(f[i],g[i]);}
il void operator -=(Poly &f,const int &c){f[]=sub(f[],c);}
il Poly operator -(Poly f,const Poly &g){for(reg i=;i<f.size();++i) f[i]=sub(f[i],g[i]);return f;}
il Poly operator -(Poly f,const int &c){f[]=sub(f[],c);return f;}
il Poly operator ~(const Poly &f){return Inv(f,f.size());}
il Poly operator /(Poly f,Poly g){int len=f.size()-g.size()+;f.rev();g.rev();g.resize(len);f=f*(~g);f.resize(len);f.rev();return f;}
il Poly operator %(Poly f,Poly g){Poly s=f/g;f=f-g*s;f.resize(g.size()-);return f;}
il Poly Inter(Poly f){int st=f.size();f.resize(st+);for(reg i=st;i>=;--i){f[i]=mul(f[i-],qm(i,mod-));}f[]=;return f;}
il Poly Diff(Poly f){int st=f.size();for(reg i=;i<st-;++i) f[i]=mul(f[i+],(i+));f.resize(st-);return f;}
il Poly Ln(const Poly &f){Poly g=Diff(f),h=(~f);g=g*h;g.resize(f.size()-);return Inter(g);}
il Poly Exp(const Poly &f,int n){
if(n==){
Poly g;g.resize();g[]=;
return g;
}
Poly g=Exp(f,(n+)>>);
g.resize(n);
g=g*(((Ln(g)*(mod-))+)+f);
g.resize(n);
return g;
}
il Poly Exp(const Poly &f){
return Exp(f,f.size());
}
int jie[N],inv[N];
void main(){
if(Y==){
printf("%d\n",mul(qm(n,n-),qm(n,n-)));
return;
}
int z=ad(qm(Y,mod-),mod-);
Poly g;
g.resize(n+); int ivz=qm(z,mod-);
jie[]=;
for(reg i=;i<=n;++i) jie[i]=mul(jie[i-],i);
inv[n]=qm(jie[n],mod-);
for(reg i=n-;i>=;--i) inv[i]=mul(inv[i+],i+); for(reg j=;j<=n;++j){
g[j]=mul(mul(mul(mul(n,n),ivz),inv[j]),qm(j,j));
}
g=Exp(g);
ll ans=mul(mul(mul(mul(qm(Y,n),jie[n]),qm(qm(n,mod-),)),qm(z,n)),g[n]);
cout<<ans;
} }
int main(){
int op;
rd(n);rd(Y);rd(op);
if(op==) sol0::main();
else if(op==) sol1::main();
else sol2::main();
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
Date: 2019/4/12 15:09:42
*/