HDU-6031 Innumerable Ancestors(二分+树上倍增)

时间:2023-03-05 17:05:26

题意

给一棵树,$m$次询问,每次询问给两个点集问从两个点集中各取一个点的$LCA$的最大深度。

思路

二分答案。对于某个二分过程中得到的$Mid$,如果可行则两个点集在$Mid$所在的深度存在公共的祖先。枚举点集内的点,倍增找到他在这个深度的祖先就行。

代码

#include <bits/stdc++.h>
#define DBG(x) cerr << #x << " = " << x << endl using namespace std; const int N = 100000 + 5;
const int M = 200000 + 5; int n, m, k1, k2;
int tot, head[N];
int A[N], B[N];
int d[N], f[N][25], maxd, t;
struct edgenode {
int to, next;
}edge[M];
set<int> st;
queue<int> Q; void addedge(int u, int v) {
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
} void bfs() {
while(!Q.empty()) Q.pop();
Q.push(1); d[1] = 1;
while(!Q.empty()) {
int tmp = Q.front(); Q.pop();
for(int i = head[tmp]; i != -1; i = edge[i].next) {
int v = edge[i].to;
if(d[v] != 0) continue;
d[v] = d[tmp] + 1;
f[v][0] = tmp;
for(int j = 1; j <= t; j++) f[v][j] = f[f[v][j - 1]][j - 1];
Q.push(v);
}
}
} int Find(int x, int dep) {
if(d[x] < dep) return -1;
if(d[x] == dep) return x;
for(int i = t; i >= 0; i--) if(d[f[x][i]] >= dep) x = f[x][i];
return x;
} bool judge(int x) {
st.clear();
for(int i = 1; i <= k1; i++) {
int fa = Find(A[i], x);
if(fa != -1) st.insert(fa);
}
for(int i = 1; i <= k2; i++) {
int fa = Find(B[i], x);
if(st.find(fa) != st.end()) return true;
}
return false;
} int calc(int L, int R) {
int res = L;
while(L <= R) {
int Mid = (L + R) / 2;
if(judge(Mid)) res = max(res, Mid), L = Mid + 1;
else R = Mid - 1;
}
return res;
} int main() {
while(scanf("%d%d", &n, &m) != EOF){
tot = 0;
memset(head, -1, sizeof head);
memset(f, 0, sizeof f);
memset(d, 0, sizeof d);
for(int i = 1, x, y; i <= n - 1; i++) {
scanf("%d%d", &x, &y);
addedge(x, y);
addedge(y, x);
}
t = (int)(log(n) / log(2)) + 1;
bfs();
while(m--) {
maxd = 1;
scanf("%d", &k1);
for(int i = 1; i <= k1; i++) scanf("%d", &A[i]), maxd = max(maxd, d[A[i]]);
scanf("%d", &k2);
for(int i = 1; i <= k2; i++) scanf("%d", &B[i]);
printf("%d\n", calc(1, maxd));
}
}
return 0;
}

忘了多组读入痛失1A...