以下均移自 周冬的《两极相通-浅析最大最小定理在信息学竞赛中的应用》
平面图性质
1、(欧拉公式)如果一个连通的平面图有n个点,m条边和f个面,那么f=m-n+2
2、每个平面图G都有一个与其对偶的平面图G* G*中的每个点对应G中的一个面
G*中的每个点对应G中的一个面
对于G中的每条边e
e属于两个面f1、f2,加入边(f1*, f2*)
e只属于一个面f,加入回边(f*, f*)
平面图G与其对偶图G*之间存在怎样的关系呢?
G的面数等于G*的点数,G*的点数等于G的面数,
G与G*边数相同 G*中的环对应G中的割一一对应
例题:BZOJ 1001
1001: [BeiJing2006]狼抓兔子
Time Limit: 15 Sec Memory Limit: 162 MB
Submit: 29380 Solved: 7697
[Submit][Status][Discuss]
Description
现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,
而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:
左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路
1:(x,y)<==>(x+1,y)
2:(x,y)<==>(x,y+1)
3:(x,y)<==>(x+1,y+1)
道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,
开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击
这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,
才能完全*这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的
狼的数量要最小。因为狼还要去找喜羊羊麻烦.
Input
第一行为N,M.表示网格的大小,N,M均小于等于1000.
接下来分三部分
第一部分共N行,每行M-1个数,表示横向道路的权值.
第二部分共N-1行,每行M个数,表示纵向道路的权值.
第三部分共N-1行,每行M-1个数,表示斜向道路的权值.
输入文件保证不超过10M
Output
输出一个整数,表示参与伏击的狼的最小数量.
Sample Input
3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6
Sample Output
14
解析:
根据上文建图

对啦对啦。。。n == 1 和 m == 1 的时候要单独考虑
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff; int head[maxn], cnt, n, m, s, t;
int d[maxn << ], vis[maxn];
struct node
{
int u, v, w, next;
}Node[maxn << ]; void add_(int u, int v, int w)
{
Node[cnt].u = u;
Node[cnt].v = v;
Node[cnt].w = w;
Node[cnt].next = head[u];
head[u] = cnt++;
} void add(int u, int v, int w)
{
add_(u, v, w);
add_(v, u, w);
} bool spfa(int s)
{
for(int i = ; i < (maxn << ); i++) d[i] = INF;
queue<int> Q;
mem(vis, );
Q.push(s);
vis[s] = ;
d[s] = ;
while(!Q.empty())
{
int u = Q.front(); Q.pop();
vis[u] = ;
for(int i = head[u]; i != -; i = Node[i].next)
{
node e = Node[i];
if(d[e.v] > d[u] + e.w)
{
d[e.v] = d[u] + e.w;
if(!vis[e.v])
{
Q.push(e.v);
vis[e.v] = ;
}
}
}
}
return true;
} void init()
{
mem(head, -);
cnt = ;
} int main()
{
init();
int u, v, w;
cin >> n >> m;
s = , t = n * m * + ;
if(n == ){
int minn = INF;
for(int i = ; i < m; i++){
rd(w);
minn = min(minn, w);
}
pd(minn);
return ;
}
if(m == ){
int minn = INF;
for(int i = ; i < n - ; i++){
rd(w);
minn = min(minn, w);
}
pd(minn);
return ;
}
for(int i = ; i < n; i++)
{
for(int j = ; j <= m - ; j++)
{
cin >> w;
if(i == )
add(t, i * (m - ) + j, w);
else if(i == n - )
add((n - ) * (m - ) + (i - ) * (m - ) + j, s, w);
else
add(i * (m - ) + j, (n - ) * (m - ) + (i - ) * (m - ) + j, w);
}
}
for(int i = ; i < n - ; i++)
{
for(int j = ; j <= m; j++)
{
cin >> w;
if(j == )
add(s, (n - ) * (m - ) + i * (m - ) + j, w);
else if(j == m)
add((i + ) * (m - ), t, w);
else
add(i * (m - ) + (j - ), (n - ) * (m - ) + i * (m - ) + j, w);
}
}
for(int i = ; i < n - ; i++)
for(int j = ; j <= m - ; j++)
{
cin >> w;
add(i * (m - ) + j, (n - ) * (m - ) + i * (m - ) + j, w);
}
spfa(s);
cout << d[t] << endl; return ;
}