CSS3学习笔记--transform中的Matrix(矩阵)

时间:2023-03-09 07:15:36
CSS3学习笔记--transform中的Matrix(矩阵)
transform: matrix(a,b,c,d,e,f) ,如下图矩阵所示,任意点(x,y,1)经过matrix变化为(ax+cy+e,bx+dy+f,1),由此可以知道,
matrix参数与translate/scale/skew/rotate函数参数的对应关系为:
translate(tx,ty) matrix(1,0,0,1,tx,ty)
scale(sx,sy) matrix(sx,0,0,sy,0,0)
skew(sx,sy) matrix(1,tansy,tansx,1,0,0)
rotate(rx) matrix(cosrx,sinrx,-sinrx,cosrx,0,0)
 
 
 

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAAVcAAABbCAIAAABI5lGAAAAPKUlEQVR4nO2d3VXjuhbHTQecCggVnFABSQXj0wFUgKkgTgXjqWBMBZgKoqw15+2uhakA08AlNGDdh73QFbIkb33YUoh+D+dMQiJta2/9I+tjO6OJROK0yeB//0kkEqfK/1Xgv4lE4iRJKpBInDqiCsx/T5JIJEKRVCCROHWSCiQSp05SgUTi1EkqkEicOkkFEolTJ6lAInHqJBVIJE6dpAIJFH3fhzYhAMd71WA50n4bFei6rizLsiw3m035iVC9Hvat7XYL/+i6DmOuO2A8q1cw/ogoB+DbkHnQqBF4dwfxmuC4eao+IoSoxjvIRgUIIVmWrb5iZK7w3SzLdrudUQnW7HY7R+MjYdiGhBD406gQgwevr69XqxX8F9MIfHXX19d8jch6reFDbr1ez+O1oxgI8Eayllmv11IHqbBXAVNbX19ff/z4If0r3lx3LIw/CozaEKRwzhod0Xhttr4apyhorJpWBfb7/dnZGd4a+GtVVVdXV47mupNUgHpqBKPRhyPf1WuTEt1YgFKa53lVVcKbED1JBdyZQQWErp68FjkzqQALCz4+VD8LWZYdDgfVn2aeF4hzdGdN3/dGbeh9LDA186sAIYSfWpsnYPhK8TVqehwhBFOO57GAqkpCiGpSgAaNp28jB2HvCKZmfhUoy3K2q5uo0mAqoKIoiqZp9OYaFWiNynhfchBKVk5NBYbt7Lflt9ut0dVhhsPulRpddbB5gbZtCSFVVR0OB/j3r1+/KKVPT0+aAmNQAaD5pG3bpmkcXUsIaZqGEPL792+jLw7rquu6aZrdbjecWwF8qcDQg15qdGRUtsBrj4+P4Dj2Pv5yBOBnGel05ui6ruGdl5cXoa62bWGPg6bMzWajaVLhixASXhzkUwWg88AHFovFbrdrmibLstGtC5HEU57nbdtCWy8Wi5ubG5eKbm5u4KIOh8NqtbK+wI+PDzAMXqoGjV5UQPAgBPfZ2dnb25tjjY7oVYBvn4uLi9vbW/i39HIwAUkpLctyv9+zl5quK3U0yAFUyj6miSgof/SOAD52OBxUIcHbGUYF2Hauuq4XiwWY+/LyMmpEDPF0f3/Pb0dbLBZ1XVsP7fjNbV3XFUWhmhkdJc9z3rA8z6VFuatA3/dDD76/v7Noc6nREY0KFEUxdBz8uyxL8CDmcgSQYwGpo+u67rqu6zpQHCjk4uKCGaavdNQ2aUgMTQ28UqiXvSHB44k5TPrSFMevD4uq6xoGVk3TaNZZ8G243+/1kyMYDwb3GqX07e2Nb2rhJYO/HOnCFh3sxVwsFsvlkn+nKAqhWL2ji6LI81z/SetK67qGoY2XkJhEBXg9xvycBo8n9lshfQngxwXw9b7v3eerCCHn5+fe23B0oYT3oPQDpjU6ogo5veOY2cLlYMD8LPPVDU/v8JUOP2ldKYTEaFE0rAoIsqdZGrAw1x2p8WVZsn3pfd+znw6M8UPquhZ2uVvfDhBCkEV5XCNAejC41+hXx1HuN5+3Wbgc/UQ1XzJGBQTvfHx8sH9nWcbuPpCjY1appnsLIdH3fURjgaZpQKLqus4+t+Ww6RneaBdz3ZEa37Yta9mu6xaLRVVVXdeZ/oCwEnhNORwOMEdtZzD/4wZF8aHGsFMB3h3gwb7vHx4eWBMNPWhXoyMqFdA4TghI+IzmcgTY7KCmQ/KOpp/eYY7OPrfJfXx8IAcjeunhhzaqSnkCqEDbtjBZ2jRNVVWwhsHPsmqIIZ7gRgvsr+u6LEvkkpIUKISVJu23SGCFCYp6eHgAf7tMBVFFIzw/P9/e3goe1JQZg9co57inp6eHhwdwXN/3Ly8vLCB//fo1ejkCwhoBQ2h5wdH8LF1d11BvWZbIeSLkfgEWEk9PT0KlPIHnBUyJJJ7mYaJtRY4qYGFVQK/NsDXL4zY+6TSTe6XSRgi5UujoldhUIJ5txXhLPM4LTFGjIxqDJ3JW13XWN3GU0uVyycaS/K4BX5X6nTBOYwEJ06mAl5Ld51a+kwposG5tdzexbR1FUdjNLgnGTDpYm0oFjIyOJ55Ui8nuTD2+8LtSeBTru0FA+rHrOljMf39/n9okhrA4HV4FjDjNePKLXxXg0R9cxVvownf1mjsxniayI8WTKb7WCFy2NsXmtRhmc6I6mZpUQMlsKjDz5EKaFzBF46AYBEVAZVIaC9hwLGMBZCCyj52mCnjsrqYNPoUNeI51jaDrOna4QiB4PEWo/abMrAKQ4yy4CiD5Bv61IEYVqKpquVxK/xRJPDVNUxTFer12WShWFbtarRyL7fu+qqrHx0fpxv55VMBuCtodlcG+2tYR3gy7qVYXYKPnMCoCq4D0UqU5iE3NdUdvfFmWsM3L7zQPK9a6BPp5lL0oCmlRJ3tHgG9b1cK7F19rzJhCFzBREd1YAAaQsJ3ecX7bEb3x7OyXo28Ebm9vTTMXDYs6Pz/f7/eQvmL4+TlVoI8pf7xpMovRiuwSQ7ibYVo1eOH8/By+OMwHFZ0KEEL++ecf1V8jiSdqdRAdg3uxz8/PmTqVO/WkAke316vve78usz4+gMnIoMc03ymltG1bTVREpwJFUbBz3dGOBTzmCBoW+/r6KrxvNFCs65rllpDifSwwGscxeM27y+xUgE8uZn1/YaECDw8Pf/31F3spVB1MBZ6fnwkhP3/+ZO/AKUh9uo4Y4ol+nv0i3ClRl4qenp5gzub3798XFxfW5cDjeiEdVVmWqt89XyqgSZ7rUqMjKoOlLoPOAKEIZ++HF6UCmf8TgKzHUDW7LRcyHfd9r2pA06p5uq7bbDb6qAimApCxU0i9ynLCqsCY2/d9nucrLcMkbUbG397eLpdLiKTD4XB9fT1amgo+RexisRhtgVFWq5U+krIsQ2ZzoOq8g1SRPFdqP7LGSb12c3NzdXXFXLZer+F9ffZhTM6v0T1FvIsvLy/ZdBIy+/CwfLwKsO9qosJoKddMBaB6cMnwMoTUq/Am5rYtyK/KaLI96/kzTVZcab0Yzs/PPY6nCCHsebP8zDnz4NnZGe9B6fMU+BonWpBnxapUQOUyaTrs5+fn0bpY6mH9FUldDBIg7QKYB1JY3BHoo2LascCfP39UK/8Ul3pVYLlc/vnzB2OuOyrjpWmILcr3m84YX4hRG3rx4HK5/Pfff+kse3KkBgsTLiBewmdGp+7ZkGS9XtulHh42kaoBhYbSJCBer9fr9fr+/l5zyFXIdD4EHxL+Zwf5vOvILCtI0Wrbdr/fEw7hJSalnNR4UPHRNMQYRssx2qnaf6Zv1E8NUq+5hvhnMWjaIcM9HxXukzUYeY23s67ry8tL/uXQVNMVBNPUw9J6h9mHMU43nZjko8LxaImxCvR9r1eBzDz1KtJc2CCx2WzKr7B3MOMulfHb7ZafCMjz3G79aZgVF26q7dIZS8uU4mt2EO4nBQ/yv0imJxd4T22326H7MO0sNVholqHLhFsb4ZFzKmtHpW3UxRZdgJqrwGhUTDsvoJlbolzq1cPhoLojsl7ScEfVAfhstoQQ6x0gfDlvb2+O6YyBPM9Hp9A8rhQKHvSyKuGI1GDW1PDLxFz2+PhonX0YMzv48vKiz1iNbEAe2ARp1J6jUTHtvMBut9PEUF3XsLEZn3o1eDyx0S/5zMDrUgU8Soh8Ll9tt1vHAheLxehQwqMKID0Y3GuU0rqu9/u94DJpOmykqciuqM9YLTTg6+vrFHcE0qiYNdfQcBpmiOqWUrprCL/K5Yi+AzC8zHh5KQQmgUY3Lwgu11eNbAThxlso3NFrRo2DNNgdj6mHqeHskul+AT4qpEckgu0XEFKvHtHzCCKkbVvYlKI6kc3jayyAT577nbzG+o9j6mH6tQEvLy+NOrbmuRXMQng0OyYqwqgAbOyxSL36neLJI7BMdXd3h7mh9aUCeZ5DwsxRDyavMfgfYV/Zh1VjpdVqdXd3VxTFaFQEGwuw1KtGgpriSUrXdciFNOpPBfAeTF6TYtcFjMpHRkUwFQBUB7lVpHhyx+Ps4BQ1OhK/16TRPtoFLLIJ4gmsAqakeHInqYAF0n0QMyPU69GMkCpgcRnfIJ5mQN+wSQUCYhHzM4hOGgsoiTyerEkqEC2TZjrTkFRAyVHHk4akApGA79tGKjDpEDupwOTMc8OZVCAhEGy/AP+ybVvN8VU7c93RxBPsBiWEVFWFXJ9T4bEoimtJvyrgvUZHolUBfJDPTwAV4CVgt9vBcTGk52KIp6Zp+BNEy+XSOikAFMXuBl2KIoRst1toyXlmBwkhSN/F4LWA4BsqFFHcEeA9Fzye+r6/urriD4RgjvGp+Pvvv30VBWBa0u9YwHuNjkSoAkC0htGkAhpUVjEbWOap0SP9KrKvx2xcigJmU4HRDF/WNToSbWeL1jCaVECD1Cp4k3VdOOyNOTepKp+/HMdB42haFyCNBYIQrWE0HhVAdqTg8cR3XTYWsPOuVAXsBIVtaJtTBSaq0ZFIOttwi2EkhkmJRQWOZSwA2ZN4GzabjUcVSGMBR6LtbNEaRuNRgbOzM8xqefB4GnbdeFSAzjsWmKhGR6LtbNK8WwFPJfDEogLHMhZ4f38fdl27deDD4eBeFGbY6ZK7MamAL6I1jAZUAT40j2hegA5SVrs8gpbPudr3vZen2aaxQISdTXWzFsNAgMajAscyFqCUlmXJ91WjXFH6ovR5uzDwNqsizIsKpJVCU5B9IQiBVYAQUpbljx8/siyDZznpN89FEk9FUUAu+p8/fzo+DJsVVVWVS1HQknmej7akr7EAX+Pd3d1ms4k5B3FA+Ia6v78fDfL5iWJeAE888QTpnLzkivJYFAa/dwTea3QkQhWInyhUQPOINYGTiqeJcpwnFUgIRKECACahUoonPJPOCxiRvKbnm88LaJ5NZHflc8aT/sFKx4tRG+qfMafB7tE37hyjCgQn+/o4WU3ftB8LkK8Y2UcIgWd4AfPHk4vxkSBcQoZ7gjD7rkUjDGtk35r6d+/beG1SNA7SY68CPKb75LMBM6uAwDxV+8WlDe0aYej05LWo4F1jFBI2KnDUBL9biwf3ppi5MZPvhnhpk5NTgYRHUrf8HiQVOFaC/5IHkYBJH+ZzpLhfu7EK+GrusG4zfYZa/Lg/GCN+z34nf82P5zWCRPzM0GFSn/w2JBVIJE6dpAKJxKmTVCCROHXkKpBIJE6NpAKJxKnzfxVIJBKnSdqSnUicOv8DmJvf8ZbfKtEAAAAASUVORK5CYII=" alt="" />