Linux3.10.0块IO子系统流程(1)-- 上层提交请求

时间:2023-03-09 07:12:21
Linux3.10.0块IO子系统流程(1)-- 上层提交请求
Linux通用块层提供给上层的接口函数是submit_bio。上层在构造好bio之后,调用submit_bio提交给通用块层处理。
submit_bio函数如下:
void submit_bio(int rw, struct bio *bio)
{
bio->bi_rw |= rw; //记录读写方式
/*
* 执行有数据传输的读写或屏障请求统计,暂不关心
*/
if (bio_has_data(bio)) {
unsigned int count;
if (unlikely(rw & REQ_WRITE_SAME))
count = bdev_logical_block_size(bio->bi_bdev) >> ;
else
count = bio_sectors(bio);
if (rw & WRITE) {
count_vm_events(PGPGOUT, count);
} else {
task_io_account_read(bio->bi_size);
count_vm_events(PGPGIN, count);
}
if (unlikely(block_dump)) {
char b[BDEVNAME_SIZE];
printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
current->comm, task_pid_nr(current),
(rw & WRITE) ? "WRITE" : "READ",
(unsigned long long)bio->bi_sector,
bdevname(bio->bi_bdev, b),
count);
}
}
//执行真实的IO处理
generic_make_request(bio);
}
void generic_make_request(struct bio *bio)
{
struct bio_list bio_list_on_stack;
if (!generic_make_request_checks(bio))
return; if (current->bio_list) {
bio_list_add(current->bio_list, bio);
return;
} BUG_ON(bio->bi_next);
bio_list_init(&bio_list_on_stack);
current->bio_list = &bio_list_on_stack;
do {
struct request_queue *q = bdev_get_queue(bio->bi_bdev); //获取bio对应的请求队列
q->make_request_fn(q, bio); //调用请求队列的回调函数来处理IO
bio = bio_list_pop(current->bio_list);
} while (bio);
current->bio_list = NULL; /* deactivate */
}
在调用make_request_fn处理bio的时候,可能会产生新的bio,即make_request_fn会递归调用generic_make_request 最直观的例子就是“栈式块设备”。为了防止栈式块设备执行请求可能出现问题,在一个时刻只允许进程有一个generic_make_request被调用。为此,在进程结构中定义了一个bio等待处理链表:bio_list。同时区分“活动”和“非活动”状态。活动状态表示进程已经在调用generic_make_request。这时,所有后续产生的bio都链入bio_list链表,在当前bio完成的情况下,逐个处理。
generic_make_request的执行过程:
  1. generic_make_request_checks
  2. 判断make_request是否处于活动状态。如果current->bio_list不为NULL,则表明当前进程已经有generic_make_request在执行,这时候传进来的bio都将链接到当前进程等待处理的bio链表尾部
  3. 设置current->bio_list表明当前的generic_make_request为活动状态,让后来的bio有机会插入等待链表
  4. 处理bio。这里的bio可能是传入的bio,也可能是当前进程待处理bio链表中的bio。如果是前者,上层保证了其bi_next必然为NULL;如果是后者,则在将bio从链表中脱离的时候,已经设置了bi_next为NULL
  5. 调用make_request_fn回调处理bio
  6. 检查当前进程的等待链表中是否还有bio,如果有,跳到第三步
  7. 至此,generic_make_request的“本轮执行周期”已经完毕,清零current->bio_list,使得generic_make_request处于“非活动”状态
这里再看下generic_make_request_checks
 static noinline_for_stack bool
generic_make_request_checks(struct bio *bio)
{
struct request_queue *q;
int nr_sectors = bio_sectors(bio);
int err = -EIO;
char b[BDEVNAME_SIZE];
struct hd_struct *part; might_sleep(); // 检查bio的扇区有没有超过块设备的扇区数
if (bio_check_eod(bio, nr_sectors))
goto end_io; // 检测块设备的请求队列是否为空
q = bdev_get_queue(bio->bi_bdev);
if (unlikely(!q)) {
printk(KERN_ERR
"generic_make_request: Trying to access "
"nonexistent block-device %s (%Lu)\n",
bdevname(bio->bi_bdev, b),
(long long) bio->bi_sector);
goto end_io;
} // 检测请求的扇区长度是否超过物理限制
if (likely(bio_is_rw(bio) &&
nr_sectors > queue_max_hw_sectors(q))) {
printk(KERN_ERR "bio too big device %s (%u > %u)\n",
bdevname(bio->bi_bdev, b),
bio_sectors(bio),
queue_max_hw_sectors(q));
goto end_io;
} part = bio->bi_bdev->bd_part;
if (should_fail_request(part, bio->bi_size) ||
should_fail_request(&part_to_disk(part)->part0,
bio->bi_size))
goto end_io; /*
* If this device has partitions, remap block n of partition p to block n+start(p) of the disk.
* 如果请求的块设备可能代表一个分区,这里重新映射到所在的磁盘设备
*/
blk_partition_remap(bio); if (bio_check_eod(bio, nr_sectors))
goto end_io; /*
* Filter flush bio's early so that make_request based
* drivers without flush support don't have to worry
* about them.
*/
if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
if (!nr_sectors) {
err = ;
goto end_io;
}
} // 检查设备对DISCARD命令的支持
if ((bio->bi_rw & REQ_DISCARD) &&
(!blk_queue_discard(q) ||
((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
err = -EOPNOTSUPP;
goto end_io;
} if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
err = -EOPNOTSUPP;
goto end_io;
} /*
* Various block parts want %current->io_context and lazy ioc
* allocation ends up trading a lot of pain for a small amount of
* memory. Just allocate it upfront. This may fail and block
* layer knows how to live with it.
*/
create_io_context(GFP_ATOMIC, q->node); if (blk_throtl_bio(q, bio))
return false; /* throttled, will be resubmitted later */ trace_block_bio_queue(q, bio);
return true; end_io:
bio_endio(bio, err);
return false;
}

generic_make_request_checks