玩具装箱 bzoj1010 斜率优化

时间:2023-03-09 07:08:16
玩具装箱 bzoj1010 斜率优化

斜率优化的题好像都是这样的方程:左边关于j,k的一个(...)/(...)的式子,右边是个只与i有关的可算的数字;

然后把它放到二维坐标轴上,用单调队列维护一个凸壳,O(n)的复杂度;

这道题但是我发现我wrong了,找了程序看了一下,才发现斜率优化还有一点没理解;才明白上午T2能A是由于数据太水,出题人万岁!

 #include<iostream>
#include<cstdio>
using namespace std;
#define LL long long
const int maxn=;
LL n,L,a[maxn],g[maxn],q[maxn],tail=,head=,f[maxn];
void init(){
freopen("1.in","r",stdin);
freopen("1.out","w",stdout);
scanf("%d%d",&n,&L);
for(int i=;i<=n;i++){
scanf("%d",&a[i]);
g[i]=g[i-]+a[i];
}
}
double p(LL k,LL j){
return double(f[j]+g[j]*g[j]-f[k]-g[k]*g[k])/(double)(*(g[j]-g[k]));
}
LL squ(LL x){return x*x;}
void work(){
for(int i=;i<=n;i++)g[i]+=i;
q[++tail]=;
for(int i=;i<=n;i++){
while(head<tail&&p(q[head],q[head+])<g[i]--L)head++;
cout<<q[head]<<endl;
f[i]=f[q[head]]+squ(g[i]-g[q[head]]-L-);
while(head<tail&&p(q[tail],i)<p(q[tail],q[tail-]))tail--;
q[++tail]=i;
}
cout<<f[n]<<endl;
}
int main(){
init();
work();
}