tensorflow学习之(九)classification 分类问题之分类手写数字0-9

时间:2023-03-09 06:50:36
tensorflow学习之(九)classification 分类问题之分类手写数字0-9
#classification 分类问题
#例子 分类手写数字0-9
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
#数据包,如果没有自动下载 number 0 to 9 data
mnist = input_data.read_data_sets('MNIST_data',one_hot=True) # 定义一个神经层
def add_layer(inputs, in_size, out_size, activation_function=None):
#add one more layer and return the output of the layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs #用测试集来评估神经网络的准确度
def computer_accuracy(v_xs,v_ys):
global prediction
y_pre = sess.run(prediction,feed_dict={xs:v_xs})
#tf.argmax()返回最大数值的下标
#tf.equal(A, B)是对比这两个矩阵或者向量的相等的元素,如果是相等的那就返回True,反正返回False,返回的值的矩阵维度和A是一样的
'''
tf.argmax(input, axis=None, name=None, dimension=None)
此函数是对矩阵按行或列计算最大值
参数
input:输入Tensor
axis:0表示按列,1表示按行
name:名称
dimension:和axis功能一样,默认axis取值优先。新加的字段
返回:Tensor 一般是行或列的最大值下标向量
'''
'''
A = [[1,3,4,5,6]]
B = [[1,3,4,3,2]]
with tf.Session() as sess:
print(sess.run(tf.equal(A, B)))
输出:[[ True True True False False]]
'''
correct_prediction = tf.equal(tf.argmax(y_pre,1),tf.argmax(v_ys,1))#tf.argmax(y_pre,1)表示预测出的值,tf.argmax(v_ys,1)表示实际值
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))#将correct_prediction的数据格式转换为tf.float32
result = sess.run(accuracy,feed_dict={xs: v_xs, ys: v_ys})
return result #define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # none表示无论给多少个例子都行,784=28*28
ys = tf.placeholder(tf.float32, [None, 10]) #表示10个需要识别的数字 # add output layer
prediction = add_layer(xs, 784, 10 , activation_function=tf.nn.softmax) #the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1])) #loss function
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
#cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=xs,labels=ys)) sess = tf.Session()
#important step
sess.run(tf.initialize_all_variables()) for i in range(1000):
batch_xs,batch_ys = mnist.train.next_batch(100) #由于计算能力有限,每次只提取数据集的一部分
sess.run(train_step,feed_dict={xs: batch_xs, ys: batch_ys})
if i % 50 == 0:
#打印计算准确度
print(computer_accuracy(mnist.test.images,mnist.test.labels))