FZU - 2109 Mountain Number 数位dp

时间:2023-03-09 06:49:54
FZU - 2109 Mountain Number 数位dp

Mountain Number

One integer number x is called "Mountain Number" if:

(1) x>0 and x is an integer;

(2) Assume x=a[0]a[1]...a[len-2]a[len-1](0≤a[i]≤9, a[0] is positive). Any a[2i+1] is larger or equal to a[2i] and a[2i+2](if exists).

For example, 111, 132, 893, 7 are "Mountain Number" while 123, 10, 76889 are not "Mountain Number".

Now you are given L and R, how many "Mountain Number" can be found between L and R (inclusive) ?

Input

The first line of the input contains an integer T (T≤100), indicating the number of test cases.

Then T cases, for any case, only two integers L and R (1≤L≤R≤1,000,000,000).

Output

For each test case, output the number of "Mountain Number" between L and R in a single line.

Sample Input

3
1 10
1 100
1 1000

Sample Output

9
54
384 给定范围寻找山数的个数。
标准的数位dp。从首位枚举到末尾,当前项与前一项符合,却不一定不满足条件,还需要与后一项进行比对,所以需要记录pre。dp的三种状态dp[pos][pre][sta](当前位置,前一位,当前项奇偶)。套板子就行,注意首位的处理。
#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<queue>
#include<stack>
#include<string>
#include<map>
#include<set>
#include<vector>
#include<algorithm>
#define MAX 105
#define INF 0x3f3f3f3f
using namespace std; typedef long long ll; int a[MAX];
int poss;
ll dp[MAX][][];
ll dfs(int pos,int pre,int sta,bool limit){
int i;
if(pos==-) return ;
if(!limit&&dp[pos][pre][sta]!=-) return dp[pos][pre][sta];
int up=limit?a[pos]:;
int cnt=;
for(i=;i<=up;i++){
if(sta==&&pre>i) continue;
if(pos!=poss&&sta==&&pre<i) continue;
cnt+=dfs(pos-,i,!sta,limit&&i==a[pos]);
}
if(!limit) dp[pos][pre][sta]=cnt;
return cnt;
}
ll solve(ll x){
int pos=;
while(x){
a[pos++]=x%;
x/=;
}
poss=pos-;
return dfs(pos-,-,,true);
}
int main()
{
int t;
ll l,r;
scanf("%d",&t);
memset(dp,-,sizeof(dp)); //初始化一次(优化)
while(t--){
scanf("%lld%lld",&l,&r);
printf("%lld\n",solve(r)-solve(l-));
}
return ;
}