HDU 5266 pog loves szh III(区间LCA)

时间:2023-03-09 06:45:27
HDU 5266 pog loves szh III(区间LCA)

题目链接 pog loves szh III

题意就是  求一个区间所有点的$LCA$。

我们把$1$到$n$的$DFS$序全部求出来……然后设$i$的$DFS$序为$c[i]$,$pc[i]$为$c[i]$的反函数。

区间的$LCA$其实就是,$DFS$序最大和最小的两个点的$LCA$。

(话说$2017$女生赛里面有一题要用的结论和这题的差不多)

然后求出区间的$DFS$序最大值$x$和最小值$y$。

然后求一下$LCA(pc[x],pc[y])$即可。

#include <bits/stdc++.h>

using namespace std;

#define rep(i, a, b)	for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 300010;
const int A = 21; int c[N];
int deep[N];
int f[N][A], g[N][A], st[N][A];
vector <int> v[N];
int ti;
int n, q;
int pc[N]; void ST(){
rep(i, 1, n) f[i][0] = c[i];
rep(j, 1, 20) rep(i, 1, n)
if ((i + (1 << j) - 1) <= n) f[i][j] = min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]); rep(i, 1, n) g[i][0] = c[i];
rep(j, 1, 20) rep(i, 1, n)
if ((i + (1 << j) - 1) <= n) g[i][j] = max(g[i][j - 1], g[i + (1 << (j - 1))][j - 1]);
} inline int solvemin(int l, int r){
int k = (int)log2((double)(r - l + 1));
return min(f[l][k], f[r - (1 << k) + 1][k]); } inline int solvemax(int l, int r){
int k = (int)log2((double)(r - l + 1));
return max(g[l][k], g[r - (1 << k) + 1][k]);
} void dfs(int x, int fa, int dep){
c[x] = ++ti; pc[ti] = x;
deep[x] = dep;
if (fa){
st[x][0] = fa;
for (int i = 0; st[st[x][i]][i]; ++i) st[x][i + 1] = st[st[x][i]][i];
} for (auto u : v[x]){
if (u == fa) continue;
dfs(u, x, dep + 1);
}
} int LCA(int a, int b){
if (deep[a] < deep[b]) swap(a, b);
for (int i = 0, delta = deep[a] - deep[b]; delta; delta >>= 1, ++i) if (delta & 1) a = st[a][i];
if (a == b) return a;
dec(i, 19, 0) if (st[a][i] != st[b][i]) a = st[a][i], b = st[b][i];
return st[a][0];
} int main(){ while (~scanf("%d", &n)){
rep(i, 0, n + 1) v[i].clear();
memset(c, 0, sizeof c);
ti = 0;
rep(i, 2, n){
int x, y;
scanf("%d%d", &x, &y);
v[x].push_back(y);
v[y].push_back(x);
} memset(st, 0, sizeof st);
memset(f, 0, sizeof f);
memset(g, 0, sizeof g);
dfs(1, 0, 0);
ST();
for (scanf("%d", &q); q--; ){
int x, y;
scanf("%d%d", &x, &y);
printf("%d\n", LCA(pc[solvemax(x, y)], pc[solvemin(x, y)])); }
} return 0;
}