The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output
Output the result of (a)+ (a+1)+....+ (b)
Sample Input
3 100
Sample Output
3042
Source
思路:欧拉函数打表;
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<queue>
#include<algorithm>
#include<stack>
#include<cstring>
#include<vector>
#include<list>
#include<set>
#include<map>
using namespace std;
#define ll __int64
#define mod 1000000007
#define inf 999999999
//#pragma comment(linker, "/STACK:102400000,102400000")
int scan()
{
int res = , ch ;
while( !( ( ch = getchar() ) >= '' && ch <= '' ) )
{
if( ch == EOF ) return << ;
}
res = ch - '' ;
while( ( ch = getchar() ) >= '' && ch <= '' )
res = res * + ( ch - '' ) ;
return res ;
}
int p[],N=;
void phi()
{
for(int i=; i<N; i++) p[i] = i;
for(int i=; i<N; i+=) p[i] >>= ;
for(int i=; i<N; i+=)
{
if(p[i] == i)
{
for(int j=i; j<N; j+=i)
p[j] = p[j] - p[j] / i;
}
}
}
int main()
{
int x,y,z,i,t;
phi();
while(~scanf("%d%d",&x,&y))
{
ll ans=;
for(i=x;i<=y;i++)
ans+=p[i];
printf("%I64d\n",ans);
}
return ;
}