[抄题]:
Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses.
For example, given n = 3, a solution set is:
[
"((()))",
"(()())",
"(())()",
"()(())",
"()()()"
]
[暴力解法]:
时间分析:
空间分析:
[优化后]:
时间分析:
空间分析:
[奇葩输出条件]:
[奇葩corner case]:
[思维问题]:
不知道括号的backtracing怎么写:定义open和close整数,分open < max 和close < open两个阶段来回溯
[英文数据结构或算法,为什么不用别的数据结构或算法]:
[一句话思路]:
[输入量]:空: 正常情况:特大:特小:程序里处理到的特殊情况:异常情况(不合法不合理的输入):
[画图]:
[一刷]:
[二刷]:
[三刷]:
[四刷]:
[五刷]:
[五分钟肉眼debug的结果]:
[总结]:
open close都是括号个数,int 直接加一就行了
[复杂度]:Time complexity: O() Space complexity: O(n)
[算法思想:迭代/递归/分治/贪心]:迭代
[关键模板化代码]:
[其他解法]:
[Follow Up]:
[LC给出的题目变变变]:
[代码风格] :
[是否头一次写此类driver funcion的代码] :
[潜台词] :
class Solution {
public List<String> generateParenthesis(int n) {
List<String> result = new ArrayList<String>();
if (n <= 0) return result;
generateParenthesisHelper(0, 0, new String(), result, n);
return result;
} public void generateParenthesisHelper(int open, int close, String item, List<String> result, int max) {
//add to result
if (item.length() >= 2 * max) {
result.add(item);
return ;
} //backtracing in 2 stages
if (open < max) generateParenthesisHelper(open + 1, close, item + '(', result, max);
if (close < open) generateParenthesisHelper(open, close + 1, item + ')', result, max);
}
}