Description
给出长度分别为1~n的珠子,长度为i的珠子有a[i]种,每种珠子有无限个,问用这些珠子串成长度为n的链有多少种方案
题解:
- dp[i]表示组合成包含i个贝壳的项链的总方案数
- 转移:dp[i]=Σdp[i-j]*a[j](1<=j<=i)
#include <bits/stdc++.h>
using namespace std;
#define dob complex<double>
#define rint register int
#define mo 313
#define IL inline
const double pi=acos(-1.0);
const int N=2e5;
dob a[N],b[N],bb[N];
int n,m,r[N],l,dp[N],sum[N];
IL void fft(dob *a,int o)
{
for (rint i=;i<n;i++)
if (i>r[i]) swap(a[i],a[r[i]]);
for (rint i=;i<n;i*=)
{
dob wn(cos(pi/i),sin(pi*o/i)),x,y;
for (rint j=;j<n;j+=(i*))
{
dob w(,);
for (rint k=;k<i;k++,w*=wn)
{
x=a[j+k],y=w*a[i+j+k];
a[j+k]=x+y,a[i+j+k]=x-y;
}
}
}
}
IL void query()
{
l=;
for (n=;n<=m;n<<=) l++;
for (rint i=;i<n;i++) r[i]=(r[i/]/)|((i&)<<(l-));
fft(a,); fft(b,);
for (rint i=;i<n;i++) a[i]*=b[i];
fft(a,-);
for (rint i=;i<=m;i++)
sum[i]=a[i].real()/n+0.5,sum[i]%=mo;
}
#define mid (l+r)/2
void cdq(int l,int r)
{
if (l==r) return;
cdq(l,mid);
for (rint i=l;i<=mid;i++) a[i-l]=dp[i];
m=r-l;
rint x;
for (x=;x<=m;x<<=);
for (rint i=mid+;i<=l+x;i++) a[i-l]=;
b[]=;
for (rint i=;i<=x;i++) b[i]=bb[i];
query();
for (rint i=mid-l+;i<=r-l;i++)
{
dp[i+l]+=sum[i];
dp[i+l]%=mo;
}
cdq(mid+,r);
}
int main()
{
freopen("noi.in","r",stdin);
freopen("noi.out","w",stdout);
std::ios::sync_with_stdio(false);
int k;
while (cin>>k&&k)
{
for (rint i=;i<=k;i++) cin>>bb[i];
memset(dp,,sizeof(dp));
dp[]=;
cdq(,k);
cout<<dp[k]%mo<<endl;
}
return ;
}
该改一个fft模板了,实在是慢https://www.luogu.org/record/show?rid=3767323