好像还有个名字叫做“极大化”?
Description
国际象棋是世界上最古老的博弈游戏之一,和中国的围棋、象棋以及日本的将棋同享盛名。据说国际象棋起源
于易经的思想,棋盘是一个8*8大小的黑白相间的方阵,对应八八六十四卦,黑白对应阴阳。而我们的主人公小Q,
正是国际象棋的*爱好者。作为一个顶尖高手,他已不满足于普通的棋盘与规则,于是他跟他的好朋友小W决定
将棋盘扩大以适应他们的新规则。小Q找到了一张由N*M个正方形的格子组成的矩形纸片,每个格子被涂有黑白两种
颜色之一。小Q想在这种纸中裁减一部分作为新棋盘,当然,他希望这个棋盘尽可能的大。不过小Q还没有决定是找
一个正方形的棋盘还是一个矩形的棋盘(当然,不管哪种,棋盘必须都黑白相间,即相邻的格子不同色),所以他
希望可以找到最大的正方形棋盘面积和最大的矩形棋盘面积,从而决定哪个更好一些。于是小Q找到了即将参加全
国信息学竞赛的你,你能帮助他么?
Input
第一行包含两个整数N和M,分别表示矩形纸片的长和宽。接下来的N行包含一个N * M的01矩阵,表示这张矩形
纸片的颜色(0表示白色,1表示黑色)。
Output
包含两行,每行包含一个整数。第一行为可以找到的最大正方形棋盘的面积,第二行为可以找到的最大矩形棋
盘的面积(注意正方形和矩形是可以相交或者包含的)。
Sample Input
3 3
1 0 1
0 1 0
1 0 0
1 0 1
0 1 0
1 0 0
Sample Output
4
6
6
HINT
N, M ≤ 2000
题目分析
第一步先插空把数字取反,把“黑白相间”这个条件转为求最大0/1矩形。
如果只是求最大的正方形,用dp非常容易解决。但因为这里还要求最大矩形,所以用单调栈会更加方便一些。
先预处理$s[i][j]$表示在第$i$行,以第$j$列为结束的0序列长度。
处理出这个东西以后,先固定一列$j$,再枚举每一行$i$。对于这个枚举出来的点$(i,j)$,就可以利用预处理出的$s[i][j]$来寻找它向上所能最大扩张长度。
实际处理的过程如图所示。
另推荐一篇博客:https://blog.****.net/Tag_king/article/details/45166051
#include<bits/stdc++.h>
const int maxn = ; struct node
{
int x,h;
node(int a=, int b=):x(a),h(b) {}
}stk[maxn];
int n,m,cnt;
int squ,rect;
int a[maxn][maxn],s[maxn][maxn]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int sqr(int x){return x*x;}
void push(int x, int h)
{
int now = x;
while (cnt&&stk[cnt].h > h)
{
squ = std::max(squ, sqr(std::min(x-stk[cnt].x, stk[cnt].h)));
rect = std::max(rect, (x-stk[cnt].x)*stk[cnt].h);
now = stk[cnt].x;
cnt--;
}
stk[++cnt] = node(now, h);
}
void calc()
{
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
s[i][j] = a[i][j]?:s[i][j-]+;
for (int j=; j<=m; j++)
{
cnt = ;
for (int i=; i<=n; i++) push(i, s[i][j]);
push(n+, );
}
}
int main()
{
n = read(), m = read();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
(i+j)%?a[i][j] = read():a[i][j] = -read();
calc();
for (int i=; i<=n; i++)
for (int j=; j<=m; j++)
a[i][j] = -a[i][j];
calc();
printf("%d\n%d\n",squ,rect);
return ;
}
END