思路:
勾股数组,又称毕达格拉斯三元组。
公式:a = s*t b = (s^2 - t^2) / 2 c = (s^2 + t^2) / 2 s > t >=1 且为互质的奇数
代码:
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#pragma GCC optimize(4)
#include<bits/stdc++.h>
using namespace std;
#define y1 y11
#define fi first
#define se second
#define pi acos(-1.0)
#define LL long long
//#define mp make_pair
#define pb push_back
#define ls rt<<1, l, m
#define rs rt<<1|1, m+1, r
#define ULL unsigned LL
#define pll pair<LL, LL>
#define pli pair<LL, int>
#define pii pair<int, int>
#define piii pair<pii, int>
#define pdd pair<double, double>
#define mem(a, b) memset(a, b, sizeof(a))
#define debug(x) cerr << #x << " = " << x << "\n";
#define fio ios::sync_with_stdio(false);cin.tie(0);cout.tie(0);
//head const int N = ;
int cnt[N+];
int main() {
for (LL s = ; ; s += ) {
if(s > N) break;
for (LL t = ; t < s; t += ) {
LL a = s*t, b = (s*s - t*t)/, c = (s*s + t*t)/;
if(a > N || b > N || c > N) break;
if(__gcd(s, t) > ) continue;
if(a+b+c > N) continue;
LL tot = a+b+c;
for (LL i = tot; i <= N; i += tot) cnt[i]++;
}
}
int ans = ;
for (int i = ; i <= N; ++i) if(cnt[i] == ) ans++;
cout << ans << endl;
return ;
}