题意:给出两点,求经过这两点的正n边形的最小面积
题解:这两点一定是最长的弦,我们设正多边形中点c,找到c到每个点的距离(都相同)
我们知道那个等腰三角形的底与每个角度就使用余弦定理
#include<set>
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<vector>
#include<string>
#include<cstdio>
#include<cstring>
#include<iomanip>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
using namespace std;
#define eps 1E-8
/*注意可能会有输出-0.000*/
#define Sgn(x) (x<-eps? -1 :x<eps? 0:1)//x为两个浮点数差的比较,注意返回整型
#define Cvs(x) (x > 0.0 ? x+eps : x-eps)//浮点数转化
#define zero(x) (((x)>0?(x):-(x))<eps)//判断是否等于0
#define mul(a,b) (a<<b)
#define dir(a,b) (a>>b)
typedef long long ll;
typedef unsigned long long ull;
const int Inf=<<;
const ll INF=1ll<<;
const double Pi=acos(-1.0);
const int Mod=1e9+;
const int Max=;
double Dis(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
double Trg(double dis)
{
double hrep=dis*3.0/;
return sqrt(hrep*dis/*dis/*dis/);
}
int main()
{
int x1,y1,x2,y2;
int n;
while(~scanf("%d %d %d %d %d",&x1,&y1,&x2,&y2,&n))
{
if(!x1&&!y1&&!x2&&!y2&&!n)
break;
double ang,dis;
dis=Dis(x1,y1,x2,y2);
ang=360.0/n*Pi/;
if(n==)
{
printf("%.6f\n",Trg(dis));
}
else if(n&)
{
dis=sqrt(dis*dis/(2.0*(-cos(ang*(n/)))));
printf("%.6f\n",0.5*dis*dis*sin(ang)*n);
}
else
{
dis/=;
printf("%.6f\n",0.5*dis*dis*sin(ang)*n);
}
}
return ;
}