Linux多线程实践(四 )线程的特定数据

时间:2023-03-09 05:18:45
Linux多线程实践(四 )线程的特定数据

在单线程程序中。我们常常要用到"全局变量"以实现多个函数间共享数据, 然而在多线程环境下。因为数据空间是共享的。因此全局变量也为全部线程所共同拥有。但有时应用程序设计中有必要提供线程私有的全局变量,仅在某个线程中有效,但却能够跨多个函数訪问。POSIX线程库通过维护一定的数据结构来解决问题。这个些数据称为(Thread-specific-data或 TSD)。

相关函数例如以下:

int pthread_key_create(pthread_key_t *key, void (*destr_function) (void *));
int pthread_key_delete(pthread_key_t key); int pthread_setspecific(pthread_key_t key, const void *pointer);
void * pthread_getspecific(pthread_key_t key); pthread_once_t once_control = PTHREAD_ONCE_INIT;
int pthread_once(pthread_once_t *once_control, void (*init_routine) (void));

Linux多线程实践(四 )线程的特定数据

watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="">

从上图可知:当调用pthread_key_create 后会产生一个全部线程都可见的线程特定数据(TSD)的键值(如上图中全部的线程都会得到一个pkey[1]的值), 可是这个键所指向的真实数据却是不同的,尽管都是pkey[1], 可是他们并非指向同一块内存,而是指向了仅仅属于自己的实际数据, 因此, 假设线程0更改了pkey[1]所指向的数据, 而并不可以影像到线程n;

在线程调用pthread_setspecific后会将每一个线程的特定数据与thread_key_t绑定起来,尽管仅仅有一个pthread_key_t。但每一个线程的特定数据是独立的内存空间,当线程退出时会运行destructor 函数。

/** 演示样例1:运用pthread_once, 让key仅仅初始化一次
注意: 将对key的初始化放入到init_routine中
**/
pthread_key_t key;
pthread_once_t once_control = PTHREAD_ONCE_INIT;
typedef struct Tsd
{
pthread_t tid;
char *str;
} tsd_t; //线程特定数据销毁函数,
//用来销毁每一个线程所指向的实际数据
void destructor_function(void *value)
{
free(value);
cout << "destructor ..." << endl;
} //初始化函数, 将对key的初始化放入该函数中,
//能够保证inti_routine函数仅仅执行一次
void init_routine()
{
pthread_key_create(&key, destructor_function);
cout << "init..." << endl;
} void *thread_routine(void *args)
{
pthread_once(&once_control, init_routine); //设置线程特定数据
tsd_t *value = (tsd_t *)malloc(sizeof(tsd_t));
value->tid = pthread_self();
value->str = (char *)args;
pthread_setspecific(key, value);
printf("%s setspecific, address: %p\n", (char *)args, value); //获取线程特定数据
value = (tsd_t *)pthread_getspecific(key);
printf("tid: 0x%x, str = %s\n", (unsigned int)value->tid, value->str);
sleep(2); //再次获取线程特定数据
value = (tsd_t *)pthread_getspecific(key);
printf("tid: 0x%x, str = %s\n", (unsigned int)value->tid, value->str); pthread_exit(NULL);
} int main()
{
pthread_t tid1, tid2;
pthread_create(&tid1, NULL, thread_routine, (void *)"thread1");
pthread_create(&tid2, NULL, thread_routine, (void *)"thread2"); pthread_join(tid1, NULL);
pthread_join(tid2, NULL);
pthread_key_delete(key); return 0;
}

执行结果例如以下:

init....

thread1 setspecific ,address: 0x7fe7a00008c0

tid: 0xa8192700, str = thread1

thread2 setspecific ,address :0x7fe7980008c0

tid: 0xa7991700 ,str = thread2

tid: 0xa8192700 ,str = thread1

tid: 0xa7001700 ,str = thread2

destructor...

destructor...

主线程创建了两个线程然后join 等待他们退出;给每一个线程的运行函数都是thread_routine,thread_routine 中调用了pthread_once,此函数表示假设当第一个线程调用它时会运行once_routine,然后从once_routine返回即pthread_once 返回,而接下去的其它线程调用它时将不再运行once_routine。此举是为了仅仅调用pthread_key_create 一次,即产生一个pthread_key_t
值。

在thread_routine 函数中自己定义了线程特定数据的类型。对于不同的线程来说TSD的内容不同,如果线程1在第一次打印完进入睡眠的时候。线程2也開始运行并调用pthread_setspecific 绑定线程2的TSD 和key_t,此时线程1调用pthread_getspecific 返回key_t 绑定的TSD指针,仍然是线程1的TSD指针,即尽管key_t 仅仅有一个,但每一个线程都有自己的TSD。

特定数据。具有128项,通过key-value实现,一个线程创建一个key,其它线程也会创建。可是并非指向的同一快内存。他们指向自己的数据。

这就是线程特定数据。

上述代码中,即使是Sleeep(2),线程1的数据并不会被线程2的数据所影响。由于是线程私有的。

当线程退出的时候会销毁2次,由于创建了两个线程。

当中tid 是线程的id,str 是传递给thread_routine 的參数,能够看到有两个不同的ptr,且destroy 调用两次。

另外,关于Linux/Unix线程私有数据实现思想:

请參考 http://blog.****.net/caigen1988/article/details/7901248。写的非常好。